{"title":"1,3-丙酮二羧酸作为可逆时控 pH 值调节的简单刺激物","authors":"Vincent Verdoot, Dr. Adrien Quintard","doi":"10.1002/syst.202300037","DOIUrl":null,"url":null,"abstract":"<p>Implementation of new activated carboxylic acids is crucial to switch reversibly chemical systems over time in a safer manner. By applying cheap 1,3-acetonedicarboxylic acid, the pH of aqueous solutions can be decreased before autonomously evolving over time back again to a higher value upon diacid decarboxylation. This decarboxylation can be catalysed by different species such as simple amines or simple metals such as iron and copper salts. This process generates 2 molecules of CO<sub>2</sub> and acetone as single waste, considerably decreasing the toxicity associated with such activated acids. The potential of this weak diacid was confirmed by reversibly disrupting a strong gel upon diacid addition and opens the way to the application in complex chemically fuelled systems.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1,3-Acetonedicarboxylic Acid as a Simple Stimulus for Reversible Time-Controlled pH Modulation\",\"authors\":\"Vincent Verdoot, Dr. Adrien Quintard\",\"doi\":\"10.1002/syst.202300037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Implementation of new activated carboxylic acids is crucial to switch reversibly chemical systems over time in a safer manner. By applying cheap 1,3-acetonedicarboxylic acid, the pH of aqueous solutions can be decreased before autonomously evolving over time back again to a higher value upon diacid decarboxylation. This decarboxylation can be catalysed by different species such as simple amines or simple metals such as iron and copper salts. This process generates 2 molecules of CO<sub>2</sub> and acetone as single waste, considerably decreasing the toxicity associated with such activated acids. The potential of this weak diacid was confirmed by reversibly disrupting a strong gel upon diacid addition and opens the way to the application in complex chemically fuelled systems.</p>\",\"PeriodicalId\":72566,\"journal\":{\"name\":\"ChemSystemsChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSystemsChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/syst.202300037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/syst.202300037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
1,3-Acetonedicarboxylic Acid as a Simple Stimulus for Reversible Time-Controlled pH Modulation
Implementation of new activated carboxylic acids is crucial to switch reversibly chemical systems over time in a safer manner. By applying cheap 1,3-acetonedicarboxylic acid, the pH of aqueous solutions can be decreased before autonomously evolving over time back again to a higher value upon diacid decarboxylation. This decarboxylation can be catalysed by different species such as simple amines or simple metals such as iron and copper salts. This process generates 2 molecules of CO2 and acetone as single waste, considerably decreasing the toxicity associated with such activated acids. The potential of this weak diacid was confirmed by reversibly disrupting a strong gel upon diacid addition and opens the way to the application in complex chemically fuelled systems.