验证空气质量预报应用(F-MQO)的标准化方法:从其在整个欧洲的应用中吸取的教训

IF 4 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Lina Vitali, Kees Cuvelier, Antonio Piersanti, Alexandra Monteiro, Mario Adani, Roberta Amorati, Agnieszka Bartocha, Alessandro D'Ausilio, Paweł Durka, Carla Gama, Giulia Giovannini, Stijn Janssen, Tomasz Przybyła, Michele Stortini, Stijn Vranckx, Philippe Thunis
{"title":"验证空气质量预报应用(F-MQO)的标准化方法:从其在整个欧洲的应用中吸取的教训","authors":"Lina Vitali, Kees Cuvelier, Antonio Piersanti, Alexandra Monteiro, Mario Adani, Roberta Amorati, Agnieszka Bartocha, Alessandro D'Ausilio, Paweł Durka, Carla Gama, Giulia Giovannini, Stijn Janssen, Tomasz Przybyła, Michele Stortini, Stijn Vranckx, Philippe Thunis","doi":"10.5194/gmd-16-6029-2023","DOIUrl":null,"url":null,"abstract":"Abstract. A standardized methodology for the validation of short-term air quality forecast applications was developed in the framework of the Forum for Air quality Modeling (FAIRMODE) activities. The proposed approach, focusing on specific features to be checked when evaluating a forecasting application, investigates the model's capability to detect sudden changes in pollutant concentration levels, predict threshold exceedances and reproduce air quality indices. The proposed formulation relies on the definition of specific forecast modelling quality objectives and performance criteria, defining the minimum level of quality to be achieved by a forecasting application when it is used for policy purposes. The persistence model, which uses the most recent observed value as the predicted value, is used as a benchmark for the forecast evaluation. The validation protocol has been applied to several forecasting applications across Europe, using different modelling paradigms and covering a range of geographical contexts and spatial scales. The method is successful, with room for improvement, in highlighting shortcomings and strengths of forecasting applications. This provides a useful basis for using short-term air quality forecasts as a supporting tool for providing correct information to citizens and regulators.","PeriodicalId":12799,"journal":{"name":"Geoscientific Model Development","volume":"269 2","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A standardized methodology for the validation of air quality forecast applications (F-MQO): lessons learnt from its application across Europe\",\"authors\":\"Lina Vitali, Kees Cuvelier, Antonio Piersanti, Alexandra Monteiro, Mario Adani, Roberta Amorati, Agnieszka Bartocha, Alessandro D'Ausilio, Paweł Durka, Carla Gama, Giulia Giovannini, Stijn Janssen, Tomasz Przybyła, Michele Stortini, Stijn Vranckx, Philippe Thunis\",\"doi\":\"10.5194/gmd-16-6029-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. A standardized methodology for the validation of short-term air quality forecast applications was developed in the framework of the Forum for Air quality Modeling (FAIRMODE) activities. The proposed approach, focusing on specific features to be checked when evaluating a forecasting application, investigates the model's capability to detect sudden changes in pollutant concentration levels, predict threshold exceedances and reproduce air quality indices. The proposed formulation relies on the definition of specific forecast modelling quality objectives and performance criteria, defining the minimum level of quality to be achieved by a forecasting application when it is used for policy purposes. The persistence model, which uses the most recent observed value as the predicted value, is used as a benchmark for the forecast evaluation. The validation protocol has been applied to several forecasting applications across Europe, using different modelling paradigms and covering a range of geographical contexts and spatial scales. The method is successful, with room for improvement, in highlighting shortcomings and strengths of forecasting applications. This provides a useful basis for using short-term air quality forecasts as a supporting tool for providing correct information to citizens and regulators.\",\"PeriodicalId\":12799,\"journal\":{\"name\":\"Geoscientific Model Development\",\"volume\":\"269 2\",\"pages\":\"0\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscientific Model Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/gmd-16-6029-2023\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Model Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/gmd-16-6029-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要在空气质量模拟论坛(FAIRMODE)活动的框架内,制定了一套验证短期空气质量预报应用的标准化方法。该方法侧重于评估预测应用程序时要检查的具体特征,研究模型检测污染物浓度水平突然变化、预测阈值超标和再现空气质量指数的能力。建议的模式依赖于具体预测模型的质量目标和表现准则的定义,定义预测应用程序在用于政策目的时应达到的最低质量水平。使用最近的观测值作为预测值的持久性模型被用作预测评估的基准。该验证方案已应用于欧洲各地的几种预测应用,使用不同的建模范式,涵盖了一系列地理背景和空间尺度。该方法在突出预测应用的缺点和优点方面是成功的,有改进的余地。这为使用短期空气质素预报,作为向市民和规管机构提供正确资讯的辅助工具,提供了有用的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A standardized methodology for the validation of air quality forecast applications (F-MQO): lessons learnt from its application across Europe
Abstract. A standardized methodology for the validation of short-term air quality forecast applications was developed in the framework of the Forum for Air quality Modeling (FAIRMODE) activities. The proposed approach, focusing on specific features to be checked when evaluating a forecasting application, investigates the model's capability to detect sudden changes in pollutant concentration levels, predict threshold exceedances and reproduce air quality indices. The proposed formulation relies on the definition of specific forecast modelling quality objectives and performance criteria, defining the minimum level of quality to be achieved by a forecasting application when it is used for policy purposes. The persistence model, which uses the most recent observed value as the predicted value, is used as a benchmark for the forecast evaluation. The validation protocol has been applied to several forecasting applications across Europe, using different modelling paradigms and covering a range of geographical contexts and spatial scales. The method is successful, with room for improvement, in highlighting shortcomings and strengths of forecasting applications. This provides a useful basis for using short-term air quality forecasts as a supporting tool for providing correct information to citizens and regulators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoscientific Model Development
Geoscientific Model Development GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
8.60
自引率
9.80%
发文量
352
审稿时长
6-12 weeks
期刊介绍: Geoscientific Model Development (GMD) is an international scientific journal dedicated to the publication and public discussion of the description, development, and evaluation of numerical models of the Earth system and its components. The following manuscript types can be considered for peer-reviewed publication: * geoscientific model descriptions, from statistical models to box models to GCMs; * development and technical papers, describing developments such as new parameterizations or technical aspects of running models such as the reproducibility of results; * new methods for assessment of models, including work on developing new metrics for assessing model performance and novel ways of comparing model results with observational data; * papers describing new standard experiments for assessing model performance or novel ways of comparing model results with observational data; * model experiment descriptions, including experimental details and project protocols; * full evaluations of previously published models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信