高速心律失常分类的人工智能芯片设计

IF 2.3 Q3 NANOSCIENCE & NANOTECHNOLOGY
Yuan-Ho Chen, Ching-Tien Wang, Shinn-Yn Lin, Chao-Sung Lai, Bing Sheu
{"title":"高速心律失常分类的人工智能芯片设计","authors":"Yuan-Ho Chen, Ching-Tien Wang, Shinn-Yn Lin, Chao-Sung Lai, Bing Sheu","doi":"10.1109/mnano.2023.3316875","DOIUrl":null,"url":null,"abstract":"An artificial intelligence (AI)-enabled ECG chip (AI-ECG chip) for classifying continuous ECG signals is described. The AI-ECG chip employs a two-stage strategy. It integrates a QRS complex wave detection architecture for signal preprocessing and a two-layer deep-learning network for post-processing. TSMC <inline-formula xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><tex-math notation=\"LaTeX\">$\\text{180}~nm$</tex-math></inline-formula> complementary metal-oxide semiconductor fabrication process was used to produce the AI-ECG chip, which can be operated at a maximum frequency of <inline-formula xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><tex-math notation=\"LaTeX\">$\\text{26.3}~MHz$</tex-math></inline-formula> while consuming <inline-formula xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><tex-math notation=\"LaTeX\">$\\text{3.11}~mW$</tex-math></inline-formula> . Despite its compact <inline-formula xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><tex-math notation=\"LaTeX\">$1.41 - m{m^2}$</tex-math></inline-formula> size. The AI-ECG chip can achieve arrhythmia detection accuracy of 90.56%. A salient feature of this chip is the ability to identify up to four different arrhythmias, thus offering a more extensive diagnostic range than most comparable chips. In summary, the AI-ECG chip achieves great balance among chip size, power efficiency, and detection capabilities. It is an attractive solution for portable ECG monitoring systems.","PeriodicalId":44724,"journal":{"name":"IEEE Nanotechnology Magazine","volume":"20 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence Chip Design for High-Speed Cardiac Arrhythmia Classification\",\"authors\":\"Yuan-Ho Chen, Ching-Tien Wang, Shinn-Yn Lin, Chao-Sung Lai, Bing Sheu\",\"doi\":\"10.1109/mnano.2023.3316875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An artificial intelligence (AI)-enabled ECG chip (AI-ECG chip) for classifying continuous ECG signals is described. The AI-ECG chip employs a two-stage strategy. It integrates a QRS complex wave detection architecture for signal preprocessing and a two-layer deep-learning network for post-processing. TSMC <inline-formula xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><tex-math notation=\\\"LaTeX\\\">$\\\\text{180}~nm$</tex-math></inline-formula> complementary metal-oxide semiconductor fabrication process was used to produce the AI-ECG chip, which can be operated at a maximum frequency of <inline-formula xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><tex-math notation=\\\"LaTeX\\\">$\\\\text{26.3}~MHz$</tex-math></inline-formula> while consuming <inline-formula xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><tex-math notation=\\\"LaTeX\\\">$\\\\text{3.11}~mW$</tex-math></inline-formula> . Despite its compact <inline-formula xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><tex-math notation=\\\"LaTeX\\\">$1.41 - m{m^2}$</tex-math></inline-formula> size. The AI-ECG chip can achieve arrhythmia detection accuracy of 90.56%. A salient feature of this chip is the ability to identify up to four different arrhythmias, thus offering a more extensive diagnostic range than most comparable chips. In summary, the AI-ECG chip achieves great balance among chip size, power efficiency, and detection capabilities. It is an attractive solution for portable ECG monitoring systems.\",\"PeriodicalId\":44724,\"journal\":{\"name\":\"IEEE Nanotechnology Magazine\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nanotechnology Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mnano.2023.3316875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nanotechnology Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mnano.2023.3316875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种用于连续心电信号分类的人工智能心电芯片(AI-ECG芯片)。AI-ECG芯片采用两阶段策略。它集成了用于信号预处理的QRS复杂波检测架构和用于后处理的两层深度学习网络。AI-ECG芯片采用TSMC $\text{180}~nm$互补金属氧化物半导体制造工艺,最高工作频率为$\text{26.3}~MHz$,功耗为$\text{3.11}~mW$。尽管它的紧凑$1.41 - m{m^2}$的大小。AI-ECG芯片心律失常检测准确率达90.56%。该芯片的一个显著特点是能够识别多达四种不同的心律失常,从而提供比大多数同类芯片更广泛的诊断范围。综上所述,AI-ECG芯片在芯片尺寸、功耗效率和检测能力之间取得了很好的平衡。它是便携式心电监护系统的一个有吸引力的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence Chip Design for High-Speed Cardiac Arrhythmia Classification
An artificial intelligence (AI)-enabled ECG chip (AI-ECG chip) for classifying continuous ECG signals is described. The AI-ECG chip employs a two-stage strategy. It integrates a QRS complex wave detection architecture for signal preprocessing and a two-layer deep-learning network for post-processing. TSMC $\text{180}~nm$ complementary metal-oxide semiconductor fabrication process was used to produce the AI-ECG chip, which can be operated at a maximum frequency of $\text{26.3}~MHz$ while consuming $\text{3.11}~mW$ . Despite its compact $1.41 - m{m^2}$ size. The AI-ECG chip can achieve arrhythmia detection accuracy of 90.56%. A salient feature of this chip is the ability to identify up to four different arrhythmias, thus offering a more extensive diagnostic range than most comparable chips. In summary, the AI-ECG chip achieves great balance among chip size, power efficiency, and detection capabilities. It is an attractive solution for portable ECG monitoring systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Nanotechnology Magazine
IEEE Nanotechnology Magazine NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.90
自引率
6.20%
发文量
46
期刊介绍: IEEE Nanotechnology Magazine publishes peer-reviewed articles that present emerging trends and practices in industrial electronics product research and development, key insights, and tutorial surveys in the field of interest to the member societies of the IEEE Nanotechnology Council. IEEE Nanotechnology Magazine will be limited to the scope of the Nanotechnology Council, which supports the theory, design, and development of nanotechnology and its scientific, engineering, and industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信