{"title":"跳数约束的遗忘路由","authors":"Mohsen Ghaffari, Bernhard Haeupler, Goran Zuzic","doi":"10.1137/21m1443467","DOIUrl":null,"url":null,"abstract":"We prove the existence of an oblivious routing scheme that is -competitive in terms of , thus resolving a well-known question in oblivious routing. Concretely, consider an undirected network and a set of packets each with its own source and destination. The objective is to choose a path for each packet, from its source to its destination, so as to minimize , defined as follows: The dilation is the maximum path hop length, and the congestion is the maximum number of paths that include any single edge. The routing scheme obliviously and randomly selects a path for each packet independent of (the existence of) the other packets. Despite this obliviousness, the selected paths have within a factor of the best possible value. More precisely, for any integer hop constraint , this oblivious routing scheme selects paths of length at most and is -competitive in terms of congestion in comparison to the best possible congestion achievable via paths of length at most hops. These paths can be sampled in polynomial time. This result can be viewed as an analogue of the celebrated oblivious routing results of Räcke [Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002; Proceedings of the 40th Annual ACM Symposium on Theory of Computing, 2008], which are -competitive in terms of congestion but are not competitive in terms of dilation.","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"9 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hop-Constrained Oblivious Routing\",\"authors\":\"Mohsen Ghaffari, Bernhard Haeupler, Goran Zuzic\",\"doi\":\"10.1137/21m1443467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the existence of an oblivious routing scheme that is -competitive in terms of , thus resolving a well-known question in oblivious routing. Concretely, consider an undirected network and a set of packets each with its own source and destination. The objective is to choose a path for each packet, from its source to its destination, so as to minimize , defined as follows: The dilation is the maximum path hop length, and the congestion is the maximum number of paths that include any single edge. The routing scheme obliviously and randomly selects a path for each packet independent of (the existence of) the other packets. Despite this obliviousness, the selected paths have within a factor of the best possible value. More precisely, for any integer hop constraint , this oblivious routing scheme selects paths of length at most and is -competitive in terms of congestion in comparison to the best possible congestion achievable via paths of length at most hops. These paths can be sampled in polynomial time. This result can be viewed as an analogue of the celebrated oblivious routing results of Räcke [Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002; Proceedings of the 40th Annual ACM Symposium on Theory of Computing, 2008], which are -competitive in terms of congestion but are not competitive in terms of dilation.\",\"PeriodicalId\":49532,\"journal\":{\"name\":\"SIAM Journal on Computing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1443467\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1443467","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We prove the existence of an oblivious routing scheme that is -competitive in terms of , thus resolving a well-known question in oblivious routing. Concretely, consider an undirected network and a set of packets each with its own source and destination. The objective is to choose a path for each packet, from its source to its destination, so as to minimize , defined as follows: The dilation is the maximum path hop length, and the congestion is the maximum number of paths that include any single edge. The routing scheme obliviously and randomly selects a path for each packet independent of (the existence of) the other packets. Despite this obliviousness, the selected paths have within a factor of the best possible value. More precisely, for any integer hop constraint , this oblivious routing scheme selects paths of length at most and is -competitive in terms of congestion in comparison to the best possible congestion achievable via paths of length at most hops. These paths can be sampled in polynomial time. This result can be viewed as an analogue of the celebrated oblivious routing results of Räcke [Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002; Proceedings of the 40th Annual ACM Symposium on Theory of Computing, 2008], which are -competitive in terms of congestion but are not competitive in terms of dilation.
期刊介绍:
The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.