高维直线和线段的高阶Voronoi图的无界区域

Gill Barequet, Evanthia Papadopoulou, Martin Suderland
{"title":"高维直线和线段的高阶Voronoi图的无界区域","authors":"Gill Barequet, Evanthia Papadopoulou, Martin Suderland","doi":"10.1007/s00454-023-00492-2","DOIUrl":null,"url":null,"abstract":"Abstract We study the behavior at infinity of the farthest and the higher-order Voronoi diagram of n line segments or lines in a d -dimensional Euclidean space. The unbounded parts of these diagrams can be encoded by a Gaussian map on the sphere of directions $$\\mathbb {S}^{d-1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> . We show that the combinatorial complexity of the Gaussian map for the order- k Voronoi diagram of n line segments and lines is $$O(\\min \\{k,n-k\\}n^{d-1})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mo>min</mml:mo> <mml:mrow> <mml:mo>{</mml:mo> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> <mml:mo>}</mml:mo> </mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , which is tight for $$n-k=O(1)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . This exactly reflects the combinatorial complexity of the unbounded features of these diagrams. All the d -dimensional cells of the farthest Voronoi diagram are unbounded, its $$(d-1)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -skeleton is connected, and it does not have tunnels. A d -cell of the Voronoi diagram is called a tunnel if the set of its unbounded directions, represented as points on its Gaussian map, is not connected. In a three-dimensional space, the farthest Voronoi diagram of $$n \\ge 2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> lines in general position has exactly $$n(n-1)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> three-dimensional cells. The Gaussian map of the farthest Voronoi diagram of line segments and lines can be constructed in $$O(n^{d-1} \\alpha (n))$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mi>α</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> time, for $$d\\ge 4$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> , while if $$d=3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> , the time drops to worst-case optimal $$\\Theta (n^2)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Θ</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . We extend the obtained results to bounded polyhedra and clusters of points as sites.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unbounded Regions of High-Order Voronoi Diagrams of Lines and Line Segments in Higher Dimensions\",\"authors\":\"Gill Barequet, Evanthia Papadopoulou, Martin Suderland\",\"doi\":\"10.1007/s00454-023-00492-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the behavior at infinity of the farthest and the higher-order Voronoi diagram of n line segments or lines in a d -dimensional Euclidean space. The unbounded parts of these diagrams can be encoded by a Gaussian map on the sphere of directions $$\\\\mathbb {S}^{d-1}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> . We show that the combinatorial complexity of the Gaussian map for the order- k Voronoi diagram of n line segments and lines is $$O(\\\\min \\\\{k,n-k\\\\}n^{d-1})$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mo>min</mml:mo> <mml:mrow> <mml:mo>{</mml:mo> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> <mml:mo>}</mml:mo> </mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , which is tight for $$n-k=O(1)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . This exactly reflects the combinatorial complexity of the unbounded features of these diagrams. All the d -dimensional cells of the farthest Voronoi diagram are unbounded, its $$(d-1)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -skeleton is connected, and it does not have tunnels. A d -cell of the Voronoi diagram is called a tunnel if the set of its unbounded directions, represented as points on its Gaussian map, is not connected. In a three-dimensional space, the farthest Voronoi diagram of $$n \\\\ge 2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> lines in general position has exactly $$n(n-1)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> three-dimensional cells. The Gaussian map of the farthest Voronoi diagram of line segments and lines can be constructed in $$O(n^{d-1} \\\\alpha (n))$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mi>α</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> time, for $$d\\\\ge 4$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> , while if $$d=3$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> , the time drops to worst-case optimal $$\\\\Theta (n^2)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>Θ</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . We extend the obtained results to bounded polyhedra and clusters of points as sites.\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00492-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00492-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了三维欧几里德空间中n条线段或直线的最远和高阶Voronoi图在无穷远处的行为。这些图的无界部分可以用方向球$$\mathbb {S}^{d-1}$$ S d - 1上的高斯映射来编码。我们证明了n条线段和直线的阶- k Voronoi图的高斯映射的组合复杂度为$$O(\min \{k,n-k\}n^{d-1})$$ O (min {k, n - k} nd - 1),对于$$n-k=O(1)$$ n - k = O(1)是紧的。这准确地反映了这些图的无界特征的组合复杂性。最远的Voronoi图的所有d维细胞都是无界的,其$$(d-1)$$ (d - 1)骨架是连通的,并且没有隧道。如果Voronoi图的无界方向集合(用高斯图上的点表示)不连通,则该d单元称为隧道。在三维空间中,$$n \ge 2$$ n≥2条线在一般位置的最远Voronoi图恰好有$$n(n-1)$$ n (n - 1)个三维细胞。线段和直线的最远Voronoi图的高斯映射可以在$$O(n^{d-1} \alpha (n))$$ O (nd - 1 α (n))时间内构造,当$$d\ge 4$$ d≥4时,当$$d=3$$ d = 3时,时间下降到最坏情况最优$$\Theta (n^2)$$ Θ (n 2)。我们将所得结果推广到有界多面体和点簇作为点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unbounded Regions of High-Order Voronoi Diagrams of Lines and Line Segments in Higher Dimensions
Abstract We study the behavior at infinity of the farthest and the higher-order Voronoi diagram of n line segments or lines in a d -dimensional Euclidean space. The unbounded parts of these diagrams can be encoded by a Gaussian map on the sphere of directions $$\mathbb {S}^{d-1}$$ S d - 1 . We show that the combinatorial complexity of the Gaussian map for the order- k Voronoi diagram of n line segments and lines is $$O(\min \{k,n-k\}n^{d-1})$$ O ( min { k , n - k } n d - 1 ) , which is tight for $$n-k=O(1)$$ n - k = O ( 1 ) . This exactly reflects the combinatorial complexity of the unbounded features of these diagrams. All the d -dimensional cells of the farthest Voronoi diagram are unbounded, its $$(d-1)$$ ( d - 1 ) -skeleton is connected, and it does not have tunnels. A d -cell of the Voronoi diagram is called a tunnel if the set of its unbounded directions, represented as points on its Gaussian map, is not connected. In a three-dimensional space, the farthest Voronoi diagram of $$n \ge 2$$ n 2 lines in general position has exactly $$n(n-1)$$ n ( n - 1 ) three-dimensional cells. The Gaussian map of the farthest Voronoi diagram of line segments and lines can be constructed in $$O(n^{d-1} \alpha (n))$$ O ( n d - 1 α ( n ) ) time, for $$d\ge 4$$ d 4 , while if $$d=3$$ d = 3 , the time drops to worst-case optimal $$\Theta (n^2)$$ Θ ( n 2 ) . We extend the obtained results to bounded polyhedra and clusters of points as sites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信