Gill Barequet, Evanthia Papadopoulou, Martin Suderland
{"title":"高维直线和线段的高阶Voronoi图的无界区域","authors":"Gill Barequet, Evanthia Papadopoulou, Martin Suderland","doi":"10.1007/s00454-023-00492-2","DOIUrl":null,"url":null,"abstract":"Abstract We study the behavior at infinity of the farthest and the higher-order Voronoi diagram of n line segments or lines in a d -dimensional Euclidean space. The unbounded parts of these diagrams can be encoded by a Gaussian map on the sphere of directions $$\\mathbb {S}^{d-1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> . We show that the combinatorial complexity of the Gaussian map for the order- k Voronoi diagram of n line segments and lines is $$O(\\min \\{k,n-k\\}n^{d-1})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mo>min</mml:mo> <mml:mrow> <mml:mo>{</mml:mo> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> <mml:mo>}</mml:mo> </mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , which is tight for $$n-k=O(1)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . This exactly reflects the combinatorial complexity of the unbounded features of these diagrams. All the d -dimensional cells of the farthest Voronoi diagram are unbounded, its $$(d-1)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -skeleton is connected, and it does not have tunnels. A d -cell of the Voronoi diagram is called a tunnel if the set of its unbounded directions, represented as points on its Gaussian map, is not connected. In a three-dimensional space, the farthest Voronoi diagram of $$n \\ge 2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> lines in general position has exactly $$n(n-1)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> three-dimensional cells. The Gaussian map of the farthest Voronoi diagram of line segments and lines can be constructed in $$O(n^{d-1} \\alpha (n))$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mi>α</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> time, for $$d\\ge 4$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> , while if $$d=3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> , the time drops to worst-case optimal $$\\Theta (n^2)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Θ</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . We extend the obtained results to bounded polyhedra and clusters of points as sites.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unbounded Regions of High-Order Voronoi Diagrams of Lines and Line Segments in Higher Dimensions\",\"authors\":\"Gill Barequet, Evanthia Papadopoulou, Martin Suderland\",\"doi\":\"10.1007/s00454-023-00492-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the behavior at infinity of the farthest and the higher-order Voronoi diagram of n line segments or lines in a d -dimensional Euclidean space. The unbounded parts of these diagrams can be encoded by a Gaussian map on the sphere of directions $$\\\\mathbb {S}^{d-1}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> . We show that the combinatorial complexity of the Gaussian map for the order- k Voronoi diagram of n line segments and lines is $$O(\\\\min \\\\{k,n-k\\\\}n^{d-1})$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mo>min</mml:mo> <mml:mrow> <mml:mo>{</mml:mo> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> <mml:mo>}</mml:mo> </mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , which is tight for $$n-k=O(1)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . This exactly reflects the combinatorial complexity of the unbounded features of these diagrams. All the d -dimensional cells of the farthest Voronoi diagram are unbounded, its $$(d-1)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -skeleton is connected, and it does not have tunnels. A d -cell of the Voronoi diagram is called a tunnel if the set of its unbounded directions, represented as points on its Gaussian map, is not connected. In a three-dimensional space, the farthest Voronoi diagram of $$n \\\\ge 2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> lines in general position has exactly $$n(n-1)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> three-dimensional cells. The Gaussian map of the farthest Voronoi diagram of line segments and lines can be constructed in $$O(n^{d-1} \\\\alpha (n))$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mi>α</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> time, for $$d\\\\ge 4$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> , while if $$d=3$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> , the time drops to worst-case optimal $$\\\\Theta (n^2)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>Θ</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . We extend the obtained results to bounded polyhedra and clusters of points as sites.\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00492-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00492-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
研究了三维欧几里德空间中n条线段或直线的最远和高阶Voronoi图在无穷远处的行为。这些图的无界部分可以用方向球$$\mathbb {S}^{d-1}$$ S d - 1上的高斯映射来编码。我们证明了n条线段和直线的阶- k Voronoi图的高斯映射的组合复杂度为$$O(\min \{k,n-k\}n^{d-1})$$ O (min {k, n - k} nd - 1),对于$$n-k=O(1)$$ n - k = O(1)是紧的。这准确地反映了这些图的无界特征的组合复杂性。最远的Voronoi图的所有d维细胞都是无界的,其$$(d-1)$$ (d - 1)骨架是连通的,并且没有隧道。如果Voronoi图的无界方向集合(用高斯图上的点表示)不连通,则该d单元称为隧道。在三维空间中,$$n \ge 2$$ n≥2条线在一般位置的最远Voronoi图恰好有$$n(n-1)$$ n (n - 1)个三维细胞。线段和直线的最远Voronoi图的高斯映射可以在$$O(n^{d-1} \alpha (n))$$ O (nd - 1 α (n))时间内构造,当$$d\ge 4$$ d≥4时,当$$d=3$$ d = 3时,时间下降到最坏情况最优$$\Theta (n^2)$$ Θ (n 2)。我们将所得结果推广到有界多面体和点簇作为点。
Unbounded Regions of High-Order Voronoi Diagrams of Lines and Line Segments in Higher Dimensions
Abstract We study the behavior at infinity of the farthest and the higher-order Voronoi diagram of n line segments or lines in a d -dimensional Euclidean space. The unbounded parts of these diagrams can be encoded by a Gaussian map on the sphere of directions $$\mathbb {S}^{d-1}$$ Sd-1 . We show that the combinatorial complexity of the Gaussian map for the order- k Voronoi diagram of n line segments and lines is $$O(\min \{k,n-k\}n^{d-1})$$ O(min{k,n-k}nd-1) , which is tight for $$n-k=O(1)$$ n-k=O(1) . This exactly reflects the combinatorial complexity of the unbounded features of these diagrams. All the d -dimensional cells of the farthest Voronoi diagram are unbounded, its $$(d-1)$$ (d-1) -skeleton is connected, and it does not have tunnels. A d -cell of the Voronoi diagram is called a tunnel if the set of its unbounded directions, represented as points on its Gaussian map, is not connected. In a three-dimensional space, the farthest Voronoi diagram of $$n \ge 2$$ n≥2 lines in general position has exactly $$n(n-1)$$ n(n-1) three-dimensional cells. The Gaussian map of the farthest Voronoi diagram of line segments and lines can be constructed in $$O(n^{d-1} \alpha (n))$$ O(nd-1α(n)) time, for $$d\ge 4$$ d≥4 , while if $$d=3$$ d=3 , the time drops to worst-case optimal $$\Theta (n^2)$$ Θ(n2) . We extend the obtained results to bounded polyhedra and clusters of points as sites.