Bennett不等式常数的上界和Gale-Berlekamp交换对策

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-10-27 DOI:10.1112/mtk.12229
Daniel Pellegrino, Anselmo Raposo Jr.
{"title":"Bennett不等式常数的上界和Gale-Berlekamp交换对策","authors":"Daniel Pellegrino,&nbsp;Anselmo Raposo Jr.","doi":"10.1112/mtk.12229","DOIUrl":null,"url":null,"abstract":"<p>In 1977, G. Bennett proved, by means of nondeterministic methods, an inequality that plays a fundamental role in a series of optimization problems. More precisely, Bennett's inequality shows that, for <math>\n <semantics>\n <mrow>\n <msub>\n <mi>p</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>p</mi>\n <mn>2</mn>\n </msub>\n <mo>∈</mo>\n <mrow>\n <mo>[</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$p_{1},p_{2} \\in [1,\\infty ]$</annotation>\n </semantics></math> and all positive integers <math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>n</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$n_{1},n_{2}$</annotation>\n </semantics></math>, there exists a bilinear form <math>\n <semantics>\n <mrow>\n <msub>\n <mi>A</mi>\n <mrow>\n <msub>\n <mi>n</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>n</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <mrow>\n <mo>:</mo>\n <mo>(</mo>\n </mrow>\n <msup>\n <mi>R</mi>\n <msub>\n <mi>n</mi>\n <mn>1</mn>\n </msub>\n </msup>\n <msub>\n <mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <mo>∥</mo>\n </mrow>\n <msub>\n <mi>p</mi>\n <mn>1</mn>\n </msub>\n </msub>\n <mrow>\n <mo>)</mo>\n <mo>×</mo>\n <mo>(</mo>\n </mrow>\n <msup>\n <mi>R</mi>\n <msub>\n <mi>n</mi>\n <mn>2</mn>\n </msub>\n </msup>\n <msub>\n <mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <mo>∥</mo>\n </mrow>\n <msub>\n <mi>p</mi>\n <mn>2</mn>\n </msub>\n </msub>\n <mrow>\n <mo>)</mo>\n <mo>⟶</mo>\n <mi>R</mi>\n </mrow>\n </mrow>\n <annotation>$A_{n_{1},n_{2}}\\colon (\\mathbb {R}^{n_{1}},\\Vert \\cdot \\Vert _{p_{1}}) \\times (\\mathbb {R}^{n_{2}},\\Vert \\cdot \\Vert _{p_{2}}) \\longrightarrow \\mathbb {R}$</annotation>\n </semantics></math> with coefficients ±1 satisfying\n\n </p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper bounds for the constants of Bennett's inequality and the Gale–Berlekamp switching game\",\"authors\":\"Daniel Pellegrino,&nbsp;Anselmo Raposo Jr.\",\"doi\":\"10.1112/mtk.12229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 1977, G. Bennett proved, by means of nondeterministic methods, an inequality that plays a fundamental role in a series of optimization problems. More precisely, Bennett's inequality shows that, for <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>p</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>p</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>∈</mo>\\n <mrow>\\n <mo>[</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation>$p_{1},p_{2} \\\\in [1,\\\\infty ]$</annotation>\\n </semantics></math> and all positive integers <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>n</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$n_{1},n_{2}$</annotation>\\n </semantics></math>, there exists a bilinear form <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>A</mi>\\n <mrow>\\n <msub>\\n <mi>n</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>:</mo>\\n <mo>(</mo>\\n </mrow>\\n <msup>\\n <mi>R</mi>\\n <msub>\\n <mi>n</mi>\\n <mn>1</mn>\\n </msub>\\n </msup>\\n <msub>\\n <mrow>\\n <mo>,</mo>\\n <mo>∥</mo>\\n <mo>·</mo>\\n <mo>∥</mo>\\n </mrow>\\n <msub>\\n <mi>p</mi>\\n <mn>1</mn>\\n </msub>\\n </msub>\\n <mrow>\\n <mo>)</mo>\\n <mo>×</mo>\\n <mo>(</mo>\\n </mrow>\\n <msup>\\n <mi>R</mi>\\n <msub>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msub>\\n </msup>\\n <msub>\\n <mrow>\\n <mo>,</mo>\\n <mo>∥</mo>\\n <mo>·</mo>\\n <mo>∥</mo>\\n </mrow>\\n <msub>\\n <mi>p</mi>\\n <mn>2</mn>\\n </msub>\\n </msub>\\n <mrow>\\n <mo>)</mo>\\n <mo>⟶</mo>\\n <mi>R</mi>\\n </mrow>\\n </mrow>\\n <annotation>$A_{n_{1},n_{2}}\\\\colon (\\\\mathbb {R}^{n_{1}},\\\\Vert \\\\cdot \\\\Vert _{p_{1}}) \\\\times (\\\\mathbb {R}^{n_{2}},\\\\Vert \\\\cdot \\\\Vert _{p_{2}}) \\\\longrightarrow \\\\mathbb {R}$</annotation>\\n </semantics></math> with coefficients ±1 satisfying\\n\\n </p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12229\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12229","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

1977年,G. Bennett用不确定性方法证明了一个不等式,这个不等式在一系列优化问题中起着基本的作用。更准确地说,Bennett不等式表明,对于p1, p2∈[1],∞]$p_{1},p_{2} \in [1,\infty ]$和所有正整数n1, n2 $n_{1},n_{2}$,存在双线性形式a n 1, n 2(R n 1,∥·∥p 1) × (R n 2,∥·∥p 2) R $A_{n_{1},n_{2}}\colon (\mathbb {R}^{n_{1}},\Vert \cdot \Vert _{p_{1}}) \times (\mathbb {R}^{n_{2}},\Vert \cdot \Vert _{p_{2}}) \longrightarrow \mathbb {R}$,系数±1令人满意
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper bounds for the constants of Bennett's inequality and the Gale–Berlekamp switching game

In 1977, G. Bennett proved, by means of nondeterministic methods, an inequality that plays a fundamental role in a series of optimization problems. More precisely, Bennett's inequality shows that, for p 1 , p 2 [ 1 , ] $p_{1},p_{2} \in [1,\infty ]$ and all positive integers n 1 , n 2 $n_{1},n_{2}$ , there exists a bilinear form A n 1 , n 2 : ( R n 1 , · p 1 ) × ( R n 2 , · p 2 ) R $A_{n_{1},n_{2}}\colon (\mathbb {R}^{n_{1}},\Vert \cdot \Vert _{p_{1}}) \times (\mathbb {R}^{n_{2}},\Vert \cdot \Vert _{p_{2}}) \longrightarrow \mathbb {R}$ with coefficients ±1 satisfying

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信