Daniel Pellegrino, Anselmo Raposo Jr.
求助PDF
{"title":"Bennett不等式常数的上界和Gale-Berlekamp交换对策","authors":"Daniel Pellegrino, Anselmo Raposo Jr.","doi":"10.1112/mtk.12229","DOIUrl":null,"url":null,"abstract":"<p>In 1977, G. Bennett proved, by means of nondeterministic methods, an inequality that plays a fundamental role in a series of optimization problems. More precisely, Bennett's inequality shows that, for <math>\n <semantics>\n <mrow>\n <msub>\n <mi>p</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>p</mi>\n <mn>2</mn>\n </msub>\n <mo>∈</mo>\n <mrow>\n <mo>[</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$p_{1},p_{2} \\in [1,\\infty ]$</annotation>\n </semantics></math> and all positive integers <math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>n</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$n_{1},n_{2}$</annotation>\n </semantics></math>, there exists a bilinear form <math>\n <semantics>\n <mrow>\n <msub>\n <mi>A</mi>\n <mrow>\n <msub>\n <mi>n</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>n</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <mrow>\n <mo>:</mo>\n <mo>(</mo>\n </mrow>\n <msup>\n <mi>R</mi>\n <msub>\n <mi>n</mi>\n <mn>1</mn>\n </msub>\n </msup>\n <msub>\n <mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <mo>∥</mo>\n </mrow>\n <msub>\n <mi>p</mi>\n <mn>1</mn>\n </msub>\n </msub>\n <mrow>\n <mo>)</mo>\n <mo>×</mo>\n <mo>(</mo>\n </mrow>\n <msup>\n <mi>R</mi>\n <msub>\n <mi>n</mi>\n <mn>2</mn>\n </msub>\n </msup>\n <msub>\n <mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <mo>∥</mo>\n </mrow>\n <msub>\n <mi>p</mi>\n <mn>2</mn>\n </msub>\n </msub>\n <mrow>\n <mo>)</mo>\n <mo>⟶</mo>\n <mi>R</mi>\n </mrow>\n </mrow>\n <annotation>$A_{n_{1},n_{2}}\\colon (\\mathbb {R}^{n_{1}},\\Vert \\cdot \\Vert _{p_{1}}) \\times (\\mathbb {R}^{n_{2}},\\Vert \\cdot \\Vert _{p_{2}}) \\longrightarrow \\mathbb {R}$</annotation>\n </semantics></math> with coefficients ±1 satisfying\n\n </p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper bounds for the constants of Bennett's inequality and the Gale–Berlekamp switching game\",\"authors\":\"Daniel Pellegrino, Anselmo Raposo Jr.\",\"doi\":\"10.1112/mtk.12229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 1977, G. Bennett proved, by means of nondeterministic methods, an inequality that plays a fundamental role in a series of optimization problems. More precisely, Bennett's inequality shows that, for <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>p</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>p</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>∈</mo>\\n <mrow>\\n <mo>[</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation>$p_{1},p_{2} \\\\in [1,\\\\infty ]$</annotation>\\n </semantics></math> and all positive integers <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>n</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$n_{1},n_{2}$</annotation>\\n </semantics></math>, there exists a bilinear form <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>A</mi>\\n <mrow>\\n <msub>\\n <mi>n</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>:</mo>\\n <mo>(</mo>\\n </mrow>\\n <msup>\\n <mi>R</mi>\\n <msub>\\n <mi>n</mi>\\n <mn>1</mn>\\n </msub>\\n </msup>\\n <msub>\\n <mrow>\\n <mo>,</mo>\\n <mo>∥</mo>\\n <mo>·</mo>\\n <mo>∥</mo>\\n </mrow>\\n <msub>\\n <mi>p</mi>\\n <mn>1</mn>\\n </msub>\\n </msub>\\n <mrow>\\n <mo>)</mo>\\n <mo>×</mo>\\n <mo>(</mo>\\n </mrow>\\n <msup>\\n <mi>R</mi>\\n <msub>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msub>\\n </msup>\\n <msub>\\n <mrow>\\n <mo>,</mo>\\n <mo>∥</mo>\\n <mo>·</mo>\\n <mo>∥</mo>\\n </mrow>\\n <msub>\\n <mi>p</mi>\\n <mn>2</mn>\\n </msub>\\n </msub>\\n <mrow>\\n <mo>)</mo>\\n <mo>⟶</mo>\\n <mi>R</mi>\\n </mrow>\\n </mrow>\\n <annotation>$A_{n_{1},n_{2}}\\\\colon (\\\\mathbb {R}^{n_{1}},\\\\Vert \\\\cdot \\\\Vert _{p_{1}}) \\\\times (\\\\mathbb {R}^{n_{2}},\\\\Vert \\\\cdot \\\\Vert _{p_{2}}) \\\\longrightarrow \\\\mathbb {R}$</annotation>\\n </semantics></math> with coefficients ±1 satisfying\\n\\n </p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12229\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12229","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用