气体辅助挤压含抗菌颗粒管材过程中气压对粒径影响的数值与实验研究

IF 1.7 4区 工程技术 Q4 POLYMER SCIENCE
Bin Liu, Xingyuan Huang, Shaoyi Ren, Xiaohui Zhang, Shuiquan Chen
{"title":"气体辅助挤压含抗菌颗粒管材过程中气压对粒径影响的数值与实验研究","authors":"Bin Liu, Xingyuan Huang, Shaoyi Ren, Xiaohui Zhang, Shuiquan Chen","doi":"10.1515/polyeng-2023-0164","DOIUrl":null,"url":null,"abstract":"Abstract During the gas-assisted extrusion process of plastic tubes embedded with antibacterial particles, the particles tend to agglomerate. The dispersion effect of these agglomerates using the nozzle-pressure-difference method is significantly influenced by the gas flow state. Therefore, this study establishes the nozzle dispersion model. The gas flow state near the nozzle is simulated and analyzed by using Ansys Fluent software. Gas-assisted extrusion experiments are conducted with different nozzle inlet pressures, and the size distribution of antibacterial particles is observed by using electron microscopy. The simulation results indicate that increasing the nozzle inlet pressure enhances the dispersion effect and expands the effective dispersion area. The experimental results demonstrate that using the nozzle disperses the agglomerates into particles with a diameter of approximately 100 nm. Furthermore, the nanoparticles diameter size decreases with the increase of the inlet pressure, validating the accuracy of the numerical analysis results.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and experimental studies on the influence of gas pressure on particle size during gas-assisted extrusion of tubes with embedded antibacterial particles\",\"authors\":\"Bin Liu, Xingyuan Huang, Shaoyi Ren, Xiaohui Zhang, Shuiquan Chen\",\"doi\":\"10.1515/polyeng-2023-0164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract During the gas-assisted extrusion process of plastic tubes embedded with antibacterial particles, the particles tend to agglomerate. The dispersion effect of these agglomerates using the nozzle-pressure-difference method is significantly influenced by the gas flow state. Therefore, this study establishes the nozzle dispersion model. The gas flow state near the nozzle is simulated and analyzed by using Ansys Fluent software. Gas-assisted extrusion experiments are conducted with different nozzle inlet pressures, and the size distribution of antibacterial particles is observed by using electron microscopy. The simulation results indicate that increasing the nozzle inlet pressure enhances the dispersion effect and expands the effective dispersion area. The experimental results demonstrate that using the nozzle disperses the agglomerates into particles with a diameter of approximately 100 nm. Furthermore, the nanoparticles diameter size decreases with the increase of the inlet pressure, validating the accuracy of the numerical analysis results.\",\"PeriodicalId\":16881,\"journal\":{\"name\":\"Journal of Polymer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/polyeng-2023-0164\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/polyeng-2023-0164","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要在填充抗菌颗粒的塑料管气体辅助挤出过程中,颗粒容易结块。喷嘴压差法对团聚体的分散效果受气流状态的显著影响。因此,本研究建立了喷嘴分散模型。利用Ansys Fluent软件对喷嘴附近的气体流动状态进行了仿真分析。在不同的喷嘴进口压力下进行了气体辅助挤压实验,并用电镜观察了抗菌颗粒的尺寸分布。仿真结果表明,增大喷嘴入口压力可以增强扩散效果,扩大有效扩散面积。实验结果表明,使用喷嘴将团聚体分散成直径约为100 nm的颗粒。纳米颗粒粒径随入口压力的增大而减小,验证了数值分析结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical and experimental studies on the influence of gas pressure on particle size during gas-assisted extrusion of tubes with embedded antibacterial particles
Abstract During the gas-assisted extrusion process of plastic tubes embedded with antibacterial particles, the particles tend to agglomerate. The dispersion effect of these agglomerates using the nozzle-pressure-difference method is significantly influenced by the gas flow state. Therefore, this study establishes the nozzle dispersion model. The gas flow state near the nozzle is simulated and analyzed by using Ansys Fluent software. Gas-assisted extrusion experiments are conducted with different nozzle inlet pressures, and the size distribution of antibacterial particles is observed by using electron microscopy. The simulation results indicate that increasing the nozzle inlet pressure enhances the dispersion effect and expands the effective dispersion area. The experimental results demonstrate that using the nozzle disperses the agglomerates into particles with a diameter of approximately 100 nm. Furthermore, the nanoparticles diameter size decreases with the increase of the inlet pressure, validating the accuracy of the numerical analysis results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Polymer Engineering
Journal of Polymer Engineering 工程技术-高分子科学
CiteScore
3.20
自引率
5.00%
发文量
95
审稿时长
2.5 months
期刊介绍: Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信