{"title":"考虑多离子耦合效应的非饱和混凝土中水分和离子迁移数值研究","authors":"Zhaozheng Meng, Yufei Zhang, Wei-kang Chen, Chuan-qing Fu, Qing Xiang Xiong, Cheng-lin Zhang, Qing-feng Liu","doi":"10.1007/s11242-023-02011-6","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the transport mechanisms within unsaturated porous media is essential to the durability problems associated with cement-based materials. However, the involvement of multi-ions electrochemical coupling effect, especially under unsaturated condition makes the transport mechanisms even more complex. In this study, the moisture and multi-ionic transport in unsaturated concrete have been modeled in three-dimensional cases. The contribution from both water vapor and liquid has been considered in moisture transport. By adopting the constitutive electrochemical law, the electrostatic potential induced by inherent charge imbalance was calculated. With parameter calibration, the numerical results agreed well with the experimental data, proving the validity of the presented model. Results from a parametric analysis showed that neglecting multi-ions coupling effect will lead to an underestimated chloride concentration, and saturated degree has an obvious impact on the coupling strength among different ions. In addition, the existence of coarse aggregates will not only block mass transport but also make the discrepancies between two-dimensional model and three-dimensional model results more obvious. Other findings which have not been reported in existing studies are also highlighted.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Numerical Study of Moisture and Ionic Transport in Unsaturated Concrete by Considering Multi-ions Coupling Effect\",\"authors\":\"Zhaozheng Meng, Yufei Zhang, Wei-kang Chen, Chuan-qing Fu, Qing Xiang Xiong, Cheng-lin Zhang, Qing-feng Liu\",\"doi\":\"10.1007/s11242-023-02011-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the transport mechanisms within unsaturated porous media is essential to the durability problems associated with cement-based materials. However, the involvement of multi-ions electrochemical coupling effect, especially under unsaturated condition makes the transport mechanisms even more complex. In this study, the moisture and multi-ionic transport in unsaturated concrete have been modeled in three-dimensional cases. The contribution from both water vapor and liquid has been considered in moisture transport. By adopting the constitutive electrochemical law, the electrostatic potential induced by inherent charge imbalance was calculated. With parameter calibration, the numerical results agreed well with the experimental data, proving the validity of the presented model. Results from a parametric analysis showed that neglecting multi-ions coupling effect will lead to an underestimated chloride concentration, and saturated degree has an obvious impact on the coupling strength among different ions. In addition, the existence of coarse aggregates will not only block mass transport but also make the discrepancies between two-dimensional model and three-dimensional model results more obvious. Other findings which have not been reported in existing studies are also highlighted.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-023-02011-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-023-02011-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A Numerical Study of Moisture and Ionic Transport in Unsaturated Concrete by Considering Multi-ions Coupling Effect
Understanding the transport mechanisms within unsaturated porous media is essential to the durability problems associated with cement-based materials. However, the involvement of multi-ions electrochemical coupling effect, especially under unsaturated condition makes the transport mechanisms even more complex. In this study, the moisture and multi-ionic transport in unsaturated concrete have been modeled in three-dimensional cases. The contribution from both water vapor and liquid has been considered in moisture transport. By adopting the constitutive electrochemical law, the electrostatic potential induced by inherent charge imbalance was calculated. With parameter calibration, the numerical results agreed well with the experimental data, proving the validity of the presented model. Results from a parametric analysis showed that neglecting multi-ions coupling effect will lead to an underestimated chloride concentration, and saturated degree has an obvious impact on the coupling strength among different ions. In addition, the existence of coarse aggregates will not only block mass transport but also make the discrepancies between two-dimensional model and three-dimensional model results more obvious. Other findings which have not been reported in existing studies are also highlighted.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).