精确分类的淤积减少量

Pub Date : 2023-10-28 DOI:10.1007/s10468-023-10238-6
Yu Liu, Panyue Zhou, Yu Zhou, Bin Zhu
{"title":"精确分类的淤积减少量","authors":"Yu Liu,&nbsp;Panyue Zhou,&nbsp;Yu Zhou,&nbsp;Bin Zhu","doi":"10.1007/s10468-023-10238-6","DOIUrl":null,"url":null,"abstract":"<div><p>Presilting and silting subcategories in extriangulated categories were introduced by Adachi and Tsukamoto recently, which are generalizations of those concepts in triangulated categories. Exact categories and triangulated categories are extriangulated categories. In this paper, we prove that the Gabriel-Zisman localization <span>\\(\\mathcal {B}/(\\textsf{thick}\\hspace{.01in}\\mathcal W)\\)</span> of an exact category <span>\\(\\mathcal {B}\\)</span> with respect to a presilting subcategory <span>\\(\\mathcal W\\)</span> satisfying certain condition can be realized as a subfactor category of <span>\\(\\mathcal {B}\\)</span>. Afterwards, we discuss the relation between silting subcategories and tilting subcategories in exact categories, which gives us a kind of important examples of our results. In particular, for a finite dimensional Gorenstein algebra, we get the relative version of the description of the singularity category due to Happel and Chen-Zhang.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silting Reduction in Exact Categories\",\"authors\":\"Yu Liu,&nbsp;Panyue Zhou,&nbsp;Yu Zhou,&nbsp;Bin Zhu\",\"doi\":\"10.1007/s10468-023-10238-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Presilting and silting subcategories in extriangulated categories were introduced by Adachi and Tsukamoto recently, which are generalizations of those concepts in triangulated categories. Exact categories and triangulated categories are extriangulated categories. In this paper, we prove that the Gabriel-Zisman localization <span>\\\\(\\\\mathcal {B}/(\\\\textsf{thick}\\\\hspace{.01in}\\\\mathcal W)\\\\)</span> of an exact category <span>\\\\(\\\\mathcal {B}\\\\)</span> with respect to a presilting subcategory <span>\\\\(\\\\mathcal W\\\\)</span> satisfying certain condition can be realized as a subfactor category of <span>\\\\(\\\\mathcal {B}\\\\)</span>. Afterwards, we discuss the relation between silting subcategories and tilting subcategories in exact categories, which gives us a kind of important examples of our results. In particular, for a finite dimensional Gorenstein algebra, we get the relative version of the description of the singularity category due to Happel and Chen-Zhang.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-023-10238-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10238-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Adachi 和 Tsukamoto 最近提出了外切范畴中的 Presilting 和 silting 子范畴,它们是这些概念在三角范畴中的概括。精确范畴和三角范畴都是外切范畴。在本文中,我们证明了精确范畴\(\mathcal {B}/(\textsf{thick}/hspace{.01in}\mathcal W)\)相对于满足一定条件的预ilting子范畴\(\mathcal W\) 的 Gabriel-Zisman localization (\mathcal {B}/(\textsf{thick}/hspace{.01in}\mathcal W)\)可以实现为\(\mathcal {B}\)的子因子范畴。之后,我们讨论了精确范畴中的淤积子范畴和倾斜子范畴之间的关系,这为我们的结果提供了一种重要的范例。特别是,对于有限维的戈伦斯坦代数,我们得到了哈佩尔和陈章对奇点范畴描述的相对版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Silting Reduction in Exact Categories

Presilting and silting subcategories in extriangulated categories were introduced by Adachi and Tsukamoto recently, which are generalizations of those concepts in triangulated categories. Exact categories and triangulated categories are extriangulated categories. In this paper, we prove that the Gabriel-Zisman localization \(\mathcal {B}/(\textsf{thick}\hspace{.01in}\mathcal W)\) of an exact category \(\mathcal {B}\) with respect to a presilting subcategory \(\mathcal W\) satisfying certain condition can be realized as a subfactor category of \(\mathcal {B}\). Afterwards, we discuss the relation between silting subcategories and tilting subcategories in exact categories, which gives us a kind of important examples of our results. In particular, for a finite dimensional Gorenstein algebra, we get the relative version of the description of the singularity category due to Happel and Chen-Zhang.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信