的对称(𝒌𝒌:𝜶𝜶𝟏𝟏,𝜶𝜶𝟐𝟐,…,𝜶𝜶𝒌𝒌)一步一步Fibonacci函数

Q4 Multidisciplinary
Yanapat Tongron, Kanyaphak Paikhlaew, Supattra Kerdmongkon, Numsook Nawapongpipat
{"title":"的对称(𝒌𝒌:𝜶𝜶𝟏𝟏,𝜶𝜶𝟐𝟐,…,𝜶𝜶𝒌𝒌)一步一步Fibonacci函数","authors":"Yanapat Tongron, Kanyaphak Paikhlaew, Supattra Kerdmongkon, Numsook Nawapongpipat","doi":"10.32802/asmscj.2023.1392","DOIUrl":null,"url":null,"abstract":"It is well known that the Fibonacci sequence (𝐹𝑛) is denoted by 𝐹0=0, 𝐹1=1 and 𝐹𝑛=𝐹𝑛−1+𝐹𝑛−2, while the Lucas sequence (𝐿𝑛) is denoted by 𝐿0=2, 𝐿1=1 and 𝐿𝑛=𝐿𝑛−1+𝐿𝑛−2. There are several studies showing relations between these two sequences. An interesting generalisation of both the sequences is a Fibonacci function 𝑓:ℝ→ℝ defined by 𝑓(𝑥+2)=𝑓(𝑥+1)+𝑓(𝑥) for any real number 𝑥 (Elmore, 1967). Research about periods of Fibonacci numbers modulo 𝑚 (Jameson, 2018) results in a contribution on the existence of primitive period of a Fibonacci function 𝑓:ℤ→ℤ modulo 𝑚 (Thongngam & Chinram, 2019). Recently, a 𝑘-step Fibonacci function 𝑓:ℤ→ℤ denoted by 𝑓(𝑛+𝑘)=𝑓(𝑛+𝑘−1)+𝑓(𝑛+𝑘−2)+⋯+𝑓(𝑛) for any integer 𝑛 and 𝑘≥2 (which is a generalisation of a Fibonacci function 𝑓:ℤ→ℤ) is introduced and the existence of primitive period of this function modulo 𝑚 is established (Tongron & Kerdmongkon, 2022). In this work, let 𝑘 be an integer ≥2. For nonnegative integers 𝛼1,𝛼2,…,𝛼𝑘 and 𝛼1≠0, a (𝑘:𝛼1,𝛼2,…,𝛼𝑘)-step Fibonacci function 𝑓:ℤ→ℤ is defined by 𝑓(𝑛)=𝑓(𝑛−𝛼1)+𝑓(𝑛−𝛼1−𝛼2)+⋯+𝑓(𝑛−𝛼1−𝛼2−⋯−𝛼𝑘) for any integer 𝑛. In fact, a 𝑘-step Fibonacci function is a special case of a (𝑘:𝛼1,𝛼2,…,𝛼𝑘)-step Fibonacci function. We present the existence of primitive period of this function modulo 𝑚 and show that certain (𝑘:𝛼1,𝛼2,…,𝛼𝑘)-step Fibonacci functions are symmetric-like.","PeriodicalId":38804,"journal":{"name":"ASM Science Journal","volume":"1 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Symmetries of (𝒌𝒌:𝜶𝜶𝟏𝟏,𝜶𝜶𝟐𝟐,…,𝜶𝜶𝒌𝒌)-step Fibonacci Functions\",\"authors\":\"Yanapat Tongron, Kanyaphak Paikhlaew, Supattra Kerdmongkon, Numsook Nawapongpipat\",\"doi\":\"10.32802/asmscj.2023.1392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that the Fibonacci sequence (𝐹𝑛) is denoted by 𝐹0=0, 𝐹1=1 and 𝐹𝑛=𝐹𝑛−1+𝐹𝑛−2, while the Lucas sequence (𝐿𝑛) is denoted by 𝐿0=2, 𝐿1=1 and 𝐿𝑛=𝐿𝑛−1+𝐿𝑛−2. There are several studies showing relations between these two sequences. An interesting generalisation of both the sequences is a Fibonacci function 𝑓:ℝ→ℝ defined by 𝑓(𝑥+2)=𝑓(𝑥+1)+𝑓(𝑥) for any real number 𝑥 (Elmore, 1967). Research about periods of Fibonacci numbers modulo 𝑚 (Jameson, 2018) results in a contribution on the existence of primitive period of a Fibonacci function 𝑓:ℤ→ℤ modulo 𝑚 (Thongngam & Chinram, 2019). Recently, a 𝑘-step Fibonacci function 𝑓:ℤ→ℤ denoted by 𝑓(𝑛+𝑘)=𝑓(𝑛+𝑘−1)+𝑓(𝑛+𝑘−2)+⋯+𝑓(𝑛) for any integer 𝑛 and 𝑘≥2 (which is a generalisation of a Fibonacci function 𝑓:ℤ→ℤ) is introduced and the existence of primitive period of this function modulo 𝑚 is established (Tongron & Kerdmongkon, 2022). In this work, let 𝑘 be an integer ≥2. For nonnegative integers 𝛼1,𝛼2,…,𝛼𝑘 and 𝛼1≠0, a (𝑘:𝛼1,𝛼2,…,𝛼𝑘)-step Fibonacci function 𝑓:ℤ→ℤ is defined by 𝑓(𝑛)=𝑓(𝑛−𝛼1)+𝑓(𝑛−𝛼1−𝛼2)+⋯+𝑓(𝑛−𝛼1−𝛼2−⋯−𝛼𝑘) for any integer 𝑛. In fact, a 𝑘-step Fibonacci function is a special case of a (𝑘:𝛼1,𝛼2,…,𝛼𝑘)-step Fibonacci function. We present the existence of primitive period of this function modulo 𝑚 and show that certain (𝑘:𝛼1,𝛼2,…,𝛼𝑘)-step Fibonacci functions are symmetric-like.\",\"PeriodicalId\":38804,\"journal\":{\"name\":\"ASM Science Journal\",\"volume\":\"1 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32802/asmscj.2023.1392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32802/asmscj.2023.1392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,斐波那契序列(𝐹𝑛)用𝐹0 = 0,𝐹1 = 1,𝐹𝑛=𝐹𝑛−1 +𝐹𝑛−2,而卢卡斯序列(𝐿𝑛)用𝐿0 = 2,𝐿1 = 1,𝐿𝑛=𝐿𝑛−1 +𝐿𝑛−2。有几项研究显示了这两个序列之间的关系。这两个序列的一个有趣的推广是一个Fibonacci函数𝑓:对于任何实数,对于𝑓(s1 +2)=𝑓(s1 +1)+𝑓(s1)定义的→1 (s1) (Elmore, 1967)。关于斐波那契数模的周期𝑚(Jameson, 2018)的研究结果对斐波那契函数的原始周期的存在性有贡献𝑓:0→0模𝑚(Thongngam &Chinram, 2019)。最近,一位𝑘-step Fibonacci函数𝑓:ℤ→ℤ用𝑓(𝑛+𝑘)=𝑓(𝑛+𝑘−1)+𝑓(𝑛+𝑘−2)+⋯+𝑓(𝑛)任何整数𝑛𝑘≥2(这是一个概括的Fibonacci函数𝑓:ℤ→ℤ)介绍和原始时期的存在这个函数建立模𝑚(Tongron,Kerdmongkon, 2022)。在本文中,设𝑘为≥2的整数。为非负整数𝛼1、𝛼2…,𝛼𝑘和𝛼1≠0,一个(𝑘:𝛼1𝛼2,…,𝛼𝑘)一步一步Fibonacci函数𝑓:ℤ→ℤ被定义为𝑓(𝑛)=𝑓(𝑛−𝛼1)+𝑓(𝑛−𝛼1−𝛼2)+⋯+𝑓(𝑛−𝛼1−𝛼2−⋯−𝛼𝑘)对于任何整数𝑛。事实上,𝑘-step斐波那契函数是(𝑘:𝛼1,𝛼2,…,𝑘)步斐波那契函数的一种特殊情况。我们给出了该函数模𝑚的原始周期的存在性,并证明了某些(𝑘:𝛼1,𝛼2,…,𝑘)步Fibonacci函数是类对称的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Symmetries of (𝒌𝒌:𝜶𝜶𝟏𝟏,𝜶𝜶𝟐𝟐,…,𝜶𝜶𝒌𝒌)-step Fibonacci Functions
It is well known that the Fibonacci sequence (𝐹𝑛) is denoted by 𝐹0=0, 𝐹1=1 and 𝐹𝑛=𝐹𝑛−1+𝐹𝑛−2, while the Lucas sequence (𝐿𝑛) is denoted by 𝐿0=2, 𝐿1=1 and 𝐿𝑛=𝐿𝑛−1+𝐿𝑛−2. There are several studies showing relations between these two sequences. An interesting generalisation of both the sequences is a Fibonacci function 𝑓:ℝ→ℝ defined by 𝑓(𝑥+2)=𝑓(𝑥+1)+𝑓(𝑥) for any real number 𝑥 (Elmore, 1967). Research about periods of Fibonacci numbers modulo 𝑚 (Jameson, 2018) results in a contribution on the existence of primitive period of a Fibonacci function 𝑓:ℤ→ℤ modulo 𝑚 (Thongngam & Chinram, 2019). Recently, a 𝑘-step Fibonacci function 𝑓:ℤ→ℤ denoted by 𝑓(𝑛+𝑘)=𝑓(𝑛+𝑘−1)+𝑓(𝑛+𝑘−2)+⋯+𝑓(𝑛) for any integer 𝑛 and 𝑘≥2 (which is a generalisation of a Fibonacci function 𝑓:ℤ→ℤ) is introduced and the existence of primitive period of this function modulo 𝑚 is established (Tongron & Kerdmongkon, 2022). In this work, let 𝑘 be an integer ≥2. For nonnegative integers 𝛼1,𝛼2,…,𝛼𝑘 and 𝛼1≠0, a (𝑘:𝛼1,𝛼2,…,𝛼𝑘)-step Fibonacci function 𝑓:ℤ→ℤ is defined by 𝑓(𝑛)=𝑓(𝑛−𝛼1)+𝑓(𝑛−𝛼1−𝛼2)+⋯+𝑓(𝑛−𝛼1−𝛼2−⋯−𝛼𝑘) for any integer 𝑛. In fact, a 𝑘-step Fibonacci function is a special case of a (𝑘:𝛼1,𝛼2,…,𝛼𝑘)-step Fibonacci function. We present the existence of primitive period of this function modulo 𝑚 and show that certain (𝑘:𝛼1,𝛼2,…,𝛼𝑘)-step Fibonacci functions are symmetric-like.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ASM Science Journal
ASM Science Journal Multidisciplinary-Multidisciplinary
CiteScore
0.60
自引率
0.00%
发文量
23
期刊介绍: The ASM Science Journal publishes advancements in the broad fields of medical, engineering, earth, mathematical, physical, chemical and agricultural sciences as well as ICT. Scientific articles published will be on the basis of originality, importance and significant contribution to science, scientific research and the public. Scientific articles published will be on the basis of originality, importance and significant contribution to science, scientific research and the public. Scientists who subscribe to the fields listed above will be the source of papers to the journal. All articles will be reviewed by at least two experts in that particular field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信