Junho Choi, Christiansen Marsim Kevin, Myeongwoo Jeong, Kihwan Ryoo, Jeewon Kim, Hyun Myung
{"title":"基于视觉-惯性距离传感器融合的多无人机姿态估计","authors":"Junho Choi, Christiansen Marsim Kevin, Myeongwoo Jeong, Kihwan Ryoo, Jeewon Kim, Hyun Myung","doi":"10.5302/j.icros.2023.23.0135","DOIUrl":null,"url":null,"abstract":"Multi-robot state estimation is crucial for real-time and accurate operation, especially in complex environments where a global navigation satellite system cannot be used. Many researchers employ multiple sensor modalities, including cameras, LiDAR, and ultra-wideband (UWB), to achieve real-time state estimation. However, each sensor has specific requirements that might limit its usage. While LiDAR sensors demand a high payload capacity, camera sensors must have matching image features between robots, and UWB sensors require known fixed anchor locations for accurate positioning. This study introduces a robust localization system with a minimal sensor setup that eliminates the need for the previously mentioned requirements. We used an anchor-free UWB setup to establish a global coordinate system, unifying all robots. Each robot performs visual-inertial odometry to estimate its ego-motion in its local coordinate system. By optimizing the local odometry from each robot using inter-robot range measurements, the positions of the robots can be robustly estimated without relying on an extensive sensor setup or infrastructure. Our method offers a simple yet effective solution for achieving accurate and real-time multi-robot state estimation in challenging environments without relying on traditional sensor requirements.","PeriodicalId":38644,"journal":{"name":"Journal of Institute of Control, Robotics and Systems","volume":"36 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-unmanned Aerial Vehicle Pose Estimation Based on Visual-inertial-range Sensor Fusion\",\"authors\":\"Junho Choi, Christiansen Marsim Kevin, Myeongwoo Jeong, Kihwan Ryoo, Jeewon Kim, Hyun Myung\",\"doi\":\"10.5302/j.icros.2023.23.0135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-robot state estimation is crucial for real-time and accurate operation, especially in complex environments where a global navigation satellite system cannot be used. Many researchers employ multiple sensor modalities, including cameras, LiDAR, and ultra-wideband (UWB), to achieve real-time state estimation. However, each sensor has specific requirements that might limit its usage. While LiDAR sensors demand a high payload capacity, camera sensors must have matching image features between robots, and UWB sensors require known fixed anchor locations for accurate positioning. This study introduces a robust localization system with a minimal sensor setup that eliminates the need for the previously mentioned requirements. We used an anchor-free UWB setup to establish a global coordinate system, unifying all robots. Each robot performs visual-inertial odometry to estimate its ego-motion in its local coordinate system. By optimizing the local odometry from each robot using inter-robot range measurements, the positions of the robots can be robustly estimated without relying on an extensive sensor setup or infrastructure. Our method offers a simple yet effective solution for achieving accurate and real-time multi-robot state estimation in challenging environments without relying on traditional sensor requirements.\",\"PeriodicalId\":38644,\"journal\":{\"name\":\"Journal of Institute of Control, Robotics and Systems\",\"volume\":\"36 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Institute of Control, Robotics and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5302/j.icros.2023.23.0135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Institute of Control, Robotics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5302/j.icros.2023.23.0135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Multi-unmanned Aerial Vehicle Pose Estimation Based on Visual-inertial-range Sensor Fusion
Multi-robot state estimation is crucial for real-time and accurate operation, especially in complex environments where a global navigation satellite system cannot be used. Many researchers employ multiple sensor modalities, including cameras, LiDAR, and ultra-wideband (UWB), to achieve real-time state estimation. However, each sensor has specific requirements that might limit its usage. While LiDAR sensors demand a high payload capacity, camera sensors must have matching image features between robots, and UWB sensors require known fixed anchor locations for accurate positioning. This study introduces a robust localization system with a minimal sensor setup that eliminates the need for the previously mentioned requirements. We used an anchor-free UWB setup to establish a global coordinate system, unifying all robots. Each robot performs visual-inertial odometry to estimate its ego-motion in its local coordinate system. By optimizing the local odometry from each robot using inter-robot range measurements, the positions of the robots can be robustly estimated without relying on an extensive sensor setup or infrastructure. Our method offers a simple yet effective solution for achieving accurate and real-time multi-robot state estimation in challenging environments without relying on traditional sensor requirements.