{"title":"基于深度学习的变电站自动稳压系统","authors":"Jiyong Moon, Minyeong Son, Byeongchan Oh, Jeongpil Jin, Younsoon Shin","doi":"10.2298/csis220509050m","DOIUrl":null,"url":null,"abstract":"The operating voltage in the substation must be maintained at its rated voltage within the specified standard because a voltage outside the specified range may cause a malfunction of the power facility and interfere with the stable power supply. Therefore, the voltage regulation process to maintain the rated voltage of the substation is essential for the stability of the power system. However, the voltage regulation process is currently performed manually by resident staff. Voltage regulation based on human judgment increases the uncertainty of voltage stabilization and makes efficient operation in consideration of the economic feasibility of power facilities difficult. Therefore, this paper proposes an automatic voltage stabilization system that can automatically perform voltage regulation. Instead of predicting the electrical load or overvoltage conditions studied so far, we focus on more direct, scalable input capacity prediction for an automatic voltage stabilization system. First, the proposed system predicts the input capacity required for a given situation through a trained stacked LSTM model. Second, an optimal regulation plan is derived through an optimization process that considers the economic feasibility of power facility operation. Additionally, the development of the user interface makes it possible to visualize the operation of algorithms and effectively communicate the models? predictions to the user. Experimental results based on real substation data show that the proposed system can effectively automate the voltage regulation process.","PeriodicalId":50636,"journal":{"name":"Computer Science and Information Systems","volume":"364 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic voltage stabilization system for substation using deep learning\",\"authors\":\"Jiyong Moon, Minyeong Son, Byeongchan Oh, Jeongpil Jin, Younsoon Shin\",\"doi\":\"10.2298/csis220509050m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The operating voltage in the substation must be maintained at its rated voltage within the specified standard because a voltage outside the specified range may cause a malfunction of the power facility and interfere with the stable power supply. Therefore, the voltage regulation process to maintain the rated voltage of the substation is essential for the stability of the power system. However, the voltage regulation process is currently performed manually by resident staff. Voltage regulation based on human judgment increases the uncertainty of voltage stabilization and makes efficient operation in consideration of the economic feasibility of power facilities difficult. Therefore, this paper proposes an automatic voltage stabilization system that can automatically perform voltage regulation. Instead of predicting the electrical load or overvoltage conditions studied so far, we focus on more direct, scalable input capacity prediction for an automatic voltage stabilization system. First, the proposed system predicts the input capacity required for a given situation through a trained stacked LSTM model. Second, an optimal regulation plan is derived through an optimization process that considers the economic feasibility of power facility operation. Additionally, the development of the user interface makes it possible to visualize the operation of algorithms and effectively communicate the models? predictions to the user. Experimental results based on real substation data show that the proposed system can effectively automate the voltage regulation process.\",\"PeriodicalId\":50636,\"journal\":{\"name\":\"Computer Science and Information Systems\",\"volume\":\"364 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/csis220509050m\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/csis220509050m","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Automatic voltage stabilization system for substation using deep learning
The operating voltage in the substation must be maintained at its rated voltage within the specified standard because a voltage outside the specified range may cause a malfunction of the power facility and interfere with the stable power supply. Therefore, the voltage regulation process to maintain the rated voltage of the substation is essential for the stability of the power system. However, the voltage regulation process is currently performed manually by resident staff. Voltage regulation based on human judgment increases the uncertainty of voltage stabilization and makes efficient operation in consideration of the economic feasibility of power facilities difficult. Therefore, this paper proposes an automatic voltage stabilization system that can automatically perform voltage regulation. Instead of predicting the electrical load or overvoltage conditions studied so far, we focus on more direct, scalable input capacity prediction for an automatic voltage stabilization system. First, the proposed system predicts the input capacity required for a given situation through a trained stacked LSTM model. Second, an optimal regulation plan is derived through an optimization process that considers the economic feasibility of power facility operation. Additionally, the development of the user interface makes it possible to visualize the operation of algorithms and effectively communicate the models? predictions to the user. Experimental results based on real substation data show that the proposed system can effectively automate the voltage regulation process.
期刊介绍:
About the journal
Home page
Contact information
Aims and scope
Indexing information
Editorial policies
ComSIS consortium
Journal boards
Managing board
For authors
Information for contributors
Paper submission
Article submission through OJS
Copyright transfer form
Download section
For readers
Forthcoming articles
Current issue
Archive
Subscription
For reviewers
View and review submissions
News
Journal''s Facebook page
Call for special issue
New issue notification
Aims and scope
Computer Science and Information Systems (ComSIS) is an international refereed journal, published in Serbia. The objective of ComSIS is to communicate important research and development results in the areas of computer science, software engineering, and information systems.