莱斯利-高尔模型的图灵不稳定性

IF 1.1 4区 数学 Q1 MATHEMATICS
F. Capone, R. De Luca, L. Fiorentino, V. Luongo, G. Massa
{"title":"莱斯利-高尔模型的图灵不稳定性","authors":"F. Capone, R. De Luca, L. Fiorentino, V. Luongo, G. Massa","doi":"10.1007/s11587-023-00819-4","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to investigate a reaction-diffusion Leslie–Gower predator–prey model, incorporating the intraguild predation and both self and cross-diffusion. The longtime behaviour of the solutions is analysed, proving the existence of an absorbing set. The existence of patterns is investigated by looking for conditions guaranteeing that an equilibrium, stable in the absence of diffusion, becomes unstable when diffusion is allowed.","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"198 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turing instability for a Leslie–Gower model\",\"authors\":\"F. Capone, R. De Luca, L. Fiorentino, V. Luongo, G. Massa\",\"doi\":\"10.1007/s11587-023-00819-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this paper is to investigate a reaction-diffusion Leslie–Gower predator–prey model, incorporating the intraguild predation and both self and cross-diffusion. The longtime behaviour of the solutions is analysed, proving the existence of an absorbing set. The existence of patterns is investigated by looking for conditions guaranteeing that an equilibrium, stable in the absence of diffusion, becomes unstable when diffusion is allowed.\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00819-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11587-023-00819-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了一个反应-扩散的Leslie-Gower捕食者-被食饵模型,该模型包含了种群内捕食、自扩散和交叉扩散。分析了解的长期行为,证明了吸收集的存在性。模式的存在性是通过寻找保证在没有扩散时稳定的平衡在允许扩散时变得不稳定的条件来研究的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Turing instability for a Leslie–Gower model

Turing instability for a Leslie–Gower model
Abstract The aim of this paper is to investigate a reaction-diffusion Leslie–Gower predator–prey model, incorporating the intraguild predation and both self and cross-diffusion. The longtime behaviour of the solutions is analysed, proving the existence of an absorbing set. The existence of patterns is investigated by looking for conditions guaranteeing that an equilibrium, stable in the absence of diffusion, becomes unstable when diffusion is allowed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信