F. Capone, R. De Luca, L. Fiorentino, V. Luongo, G. Massa
{"title":"莱斯利-高尔模型的图灵不稳定性","authors":"F. Capone, R. De Luca, L. Fiorentino, V. Luongo, G. Massa","doi":"10.1007/s11587-023-00819-4","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to investigate a reaction-diffusion Leslie–Gower predator–prey model, incorporating the intraguild predation and both self and cross-diffusion. The longtime behaviour of the solutions is analysed, proving the existence of an absorbing set. The existence of patterns is investigated by looking for conditions guaranteeing that an equilibrium, stable in the absence of diffusion, becomes unstable when diffusion is allowed.","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"198 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turing instability for a Leslie–Gower model\",\"authors\":\"F. Capone, R. De Luca, L. Fiorentino, V. Luongo, G. Massa\",\"doi\":\"10.1007/s11587-023-00819-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this paper is to investigate a reaction-diffusion Leslie–Gower predator–prey model, incorporating the intraguild predation and both self and cross-diffusion. The longtime behaviour of the solutions is analysed, proving the existence of an absorbing set. The existence of patterns is investigated by looking for conditions guaranteeing that an equilibrium, stable in the absence of diffusion, becomes unstable when diffusion is allowed.\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00819-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11587-023-00819-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract The aim of this paper is to investigate a reaction-diffusion Leslie–Gower predator–prey model, incorporating the intraguild predation and both self and cross-diffusion. The longtime behaviour of the solutions is analysed, proving the existence of an absorbing set. The existence of patterns is investigated by looking for conditions guaranteeing that an equilibrium, stable in the absence of diffusion, becomes unstable when diffusion is allowed.
期刊介绍:
“Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.