不同废混凝土配比对聚合物混凝土力学性能的影响

IF 1.5 Q2 ENGINEERING, MULTIDISCIPLINARY
Aliaa Rasheed, Shatha Sadiq, Aseel Shaaban
{"title":"不同废混凝土配比对聚合物混凝土力学性能的影响","authors":"Aliaa Rasheed, Shatha Sadiq, Aseel Shaaban","doi":"10.1515/eng-2022-0468","DOIUrl":null,"url":null,"abstract":"Abstract Polymer concrete (PC) was developed at the end of the 1950s and gained popularity in the 1970s for precast parts, flimsy floor coverings, and repairs. Due to its superior performance over traditional Portland cement concrete, which offers many benefits, including mechanical properties, quick hardening, and durability. In this article, polymeric concrete was made using a mixture of sand and epoxy, and different proportions of sand were replaced with crushed concrete waste. This study found that the ideal ratio between resin and fine aggregate was 23% resin to 77% fine aggregate in terms of the total weight of the combination to get the best dispersion of fine aggregate. Waste concrete replaced 5, 10, 15, and 20% of aggregate in PC, respectively. It was further demonstrated that increased waste concrete aggregate content in PC increased the 28-day compressive strength by 7.7, 13.44, 16.8, and 18.97%, respectively; flexural strength increased by 16.68, 25.32, 37.16, and 47.71% at 28 days’ age; and direct tensile strength was higher than the reference mixture by values of 3.41, 17.21, 23.54, and 30.38% at 28 days age. The findings recommended using recycled fine aggregate on PC and suggested a 20% replacement ratio as an optimum percentage.","PeriodicalId":19512,"journal":{"name":"Open Engineering","volume":"99 3 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of varied waste concrete ratios on the mechanical properties of polymer concrete\",\"authors\":\"Aliaa Rasheed, Shatha Sadiq, Aseel Shaaban\",\"doi\":\"10.1515/eng-2022-0468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Polymer concrete (PC) was developed at the end of the 1950s and gained popularity in the 1970s for precast parts, flimsy floor coverings, and repairs. Due to its superior performance over traditional Portland cement concrete, which offers many benefits, including mechanical properties, quick hardening, and durability. In this article, polymeric concrete was made using a mixture of sand and epoxy, and different proportions of sand were replaced with crushed concrete waste. This study found that the ideal ratio between resin and fine aggregate was 23% resin to 77% fine aggregate in terms of the total weight of the combination to get the best dispersion of fine aggregate. Waste concrete replaced 5, 10, 15, and 20% of aggregate in PC, respectively. It was further demonstrated that increased waste concrete aggregate content in PC increased the 28-day compressive strength by 7.7, 13.44, 16.8, and 18.97%, respectively; flexural strength increased by 16.68, 25.32, 37.16, and 47.71% at 28 days’ age; and direct tensile strength was higher than the reference mixture by values of 3.41, 17.21, 23.54, and 30.38% at 28 days age. The findings recommended using recycled fine aggregate on PC and suggested a 20% replacement ratio as an optimum percentage.\",\"PeriodicalId\":19512,\"journal\":{\"name\":\"Open Engineering\",\"volume\":\"99 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eng-2022-0468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eng-2022-0468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚合物混凝土(PC)是在20世纪50年代末发展起来的,在20世纪70年代开始流行,用于预制件,薄地板覆盖物和维修。由于其优越的性能优于传统的波特兰水泥混凝土,它提供了许多好处,包括机械性能,快速硬化和耐久性。本文采用砂与环氧树脂混合配制聚合物混凝土,并用破碎的混凝土废料代替不同比例的砂。本研究发现,树脂与细骨料的理想比例为树脂占总重量的23%,细骨料占总重量的77%,以获得最佳的细骨料分散效果。废混凝土分别占PC集料的5%、10%、15%和20%。结果表明,增加PC中废混凝土骨料掺量,其28天抗压强度分别提高了7.7、13.44、16.8%和18.97%;28日龄抗弯强度分别提高16.68%、25.32%、37.16%和47.71%;28日龄时,直接抗拉强度分别比对照料高3.41、17.21、23.54和30.38%。研究结果建议在PC上使用再生细骨料,并建议20%的替代率为最佳百分比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of varied waste concrete ratios on the mechanical properties of polymer concrete
Abstract Polymer concrete (PC) was developed at the end of the 1950s and gained popularity in the 1970s for precast parts, flimsy floor coverings, and repairs. Due to its superior performance over traditional Portland cement concrete, which offers many benefits, including mechanical properties, quick hardening, and durability. In this article, polymeric concrete was made using a mixture of sand and epoxy, and different proportions of sand were replaced with crushed concrete waste. This study found that the ideal ratio between resin and fine aggregate was 23% resin to 77% fine aggregate in terms of the total weight of the combination to get the best dispersion of fine aggregate. Waste concrete replaced 5, 10, 15, and 20% of aggregate in PC, respectively. It was further demonstrated that increased waste concrete aggregate content in PC increased the 28-day compressive strength by 7.7, 13.44, 16.8, and 18.97%, respectively; flexural strength increased by 16.68, 25.32, 37.16, and 47.71% at 28 days’ age; and direct tensile strength was higher than the reference mixture by values of 3.41, 17.21, 23.54, and 30.38% at 28 days age. The findings recommended using recycled fine aggregate on PC and suggested a 20% replacement ratio as an optimum percentage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Engineering
Open Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
3.90
自引率
0.00%
发文量
52
审稿时长
30 weeks
期刊介绍: Open Engineering publishes research results of wide interest in emerging interdisciplinary and traditional engineering fields, including: electrical and computer engineering, civil and environmental engineering, mechanical and aerospace engineering, material science and engineering. The journal is designed to facilitate the exchange of innovative and interdisciplinary ideas between researchers from different countries. Open Engineering is a peer-reviewed, English language journal. Researchers from non-English speaking regions are provided with free language correction by scientists who are native speakers. Additionally, each published article is widely promoted to researchers working in the same field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信