A. Sumithra, R. Sivaraj, V. Ramachandra Prasad, O. Anwar Bég, Ho-Hon Leung, Firuz Kamalov, S. Kuharat, B. Rushi Kumar
{"title":"斜磁场、热泳动和布朗运动对具有绝热壁和热狭缝的矩形多孔封闭体中混合对流导电纳米流体流动的影响计算","authors":"A. Sumithra, R. Sivaraj, V. Ramachandra Prasad, O. Anwar Bég, Ho-Hon Leung, Firuz Kamalov, S. Kuharat, B. Rushi Kumar","doi":"10.1142/s0217979224503983","DOIUrl":null,"url":null,"abstract":"This analysis theoretically investigates the transport phenomena of mixed convection flows in an enclosure of rectangular geometry saturated with a permeable medium filled with an electrically conducting nanofluid. An inclined magnetic field is taken into consideration. Buongiorno’s model is utilized to characterize the nanoliquid. The enclosure has adiabatic walls and hot slits. A uniform cold temperature is maintained at the enclosure’s lower and upper walls. The enclosure’s vertical walls are thermally insulated with hot slits at the center of the walls. This kind of analysis on mixed convective, electrically conducting nanofluid flows in enclosures finds applications in smart nanomaterial processing systems and hybrid electromagnetic nanoliquid fuel cells. The Marker-And-Cell (MAC) method is utilized to solve the transformed nondimension system of governing equations subject to the fitted boundary conditions. The effects of key physical parameters on streamlines, isotherms, iso-concentration contour plots and the heat transmission rate are examined. The simulations demonstrate that the Richardson number has a predominant impact on the thermo-solutal features of nanofluid flow in the rectangular enclosure. Variations in magnetic field and buoyancy ratio parameters exert a notable influence on the iso-concentrations and isotherms. An increase in the Darcy number values exhibits a tendency to magnify the local heat transfer rate. Higher Grashof number values reduce the local Nusselt number profiles. The effect of porous parameter is significant in the streamlines, isotherms and iso-concentrations. Thus, the porous medium can significantly control the transport phenomena in the enclosure. The concentration, temperature and velocity contours are strongly modified by the variations in the Grashof number.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"22 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation of inclined magnetic field, thermophoresis and Brownian motion effects on mixed convective electroconductive nanofluid flow in a rectangular porous enclosure with adiabatic walls and hot slits\",\"authors\":\"A. Sumithra, R. Sivaraj, V. Ramachandra Prasad, O. Anwar Bég, Ho-Hon Leung, Firuz Kamalov, S. Kuharat, B. Rushi Kumar\",\"doi\":\"10.1142/s0217979224503983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This analysis theoretically investigates the transport phenomena of mixed convection flows in an enclosure of rectangular geometry saturated with a permeable medium filled with an electrically conducting nanofluid. An inclined magnetic field is taken into consideration. Buongiorno’s model is utilized to characterize the nanoliquid. The enclosure has adiabatic walls and hot slits. A uniform cold temperature is maintained at the enclosure’s lower and upper walls. The enclosure’s vertical walls are thermally insulated with hot slits at the center of the walls. This kind of analysis on mixed convective, electrically conducting nanofluid flows in enclosures finds applications in smart nanomaterial processing systems and hybrid electromagnetic nanoliquid fuel cells. The Marker-And-Cell (MAC) method is utilized to solve the transformed nondimension system of governing equations subject to the fitted boundary conditions. The effects of key physical parameters on streamlines, isotherms, iso-concentration contour plots and the heat transmission rate are examined. The simulations demonstrate that the Richardson number has a predominant impact on the thermo-solutal features of nanofluid flow in the rectangular enclosure. Variations in magnetic field and buoyancy ratio parameters exert a notable influence on the iso-concentrations and isotherms. An increase in the Darcy number values exhibits a tendency to magnify the local heat transfer rate. Higher Grashof number values reduce the local Nusselt number profiles. The effect of porous parameter is significant in the streamlines, isotherms and iso-concentrations. Thus, the porous medium can significantly control the transport phenomena in the enclosure. The concentration, temperature and velocity contours are strongly modified by the variations in the Grashof number.\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979224503983\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217979224503983","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Computation of inclined magnetic field, thermophoresis and Brownian motion effects on mixed convective electroconductive nanofluid flow in a rectangular porous enclosure with adiabatic walls and hot slits
This analysis theoretically investigates the transport phenomena of mixed convection flows in an enclosure of rectangular geometry saturated with a permeable medium filled with an electrically conducting nanofluid. An inclined magnetic field is taken into consideration. Buongiorno’s model is utilized to characterize the nanoliquid. The enclosure has adiabatic walls and hot slits. A uniform cold temperature is maintained at the enclosure’s lower and upper walls. The enclosure’s vertical walls are thermally insulated with hot slits at the center of the walls. This kind of analysis on mixed convective, electrically conducting nanofluid flows in enclosures finds applications in smart nanomaterial processing systems and hybrid electromagnetic nanoliquid fuel cells. The Marker-And-Cell (MAC) method is utilized to solve the transformed nondimension system of governing equations subject to the fitted boundary conditions. The effects of key physical parameters on streamlines, isotherms, iso-concentration contour plots and the heat transmission rate are examined. The simulations demonstrate that the Richardson number has a predominant impact on the thermo-solutal features of nanofluid flow in the rectangular enclosure. Variations in magnetic field and buoyancy ratio parameters exert a notable influence on the iso-concentrations and isotherms. An increase in the Darcy number values exhibits a tendency to magnify the local heat transfer rate. Higher Grashof number values reduce the local Nusselt number profiles. The effect of porous parameter is significant in the streamlines, isotherms and iso-concentrations. Thus, the porous medium can significantly control the transport phenomena in the enclosure. The concentration, temperature and velocity contours are strongly modified by the variations in the Grashof number.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.