{"title":"基于卷积神经网络的电熔接头相控阵超声检测图像缺陷识别模型","authors":"Yangji Tao, Jianfeng Shi, Weican Guo, Jinyang Zheng","doi":"10.1115/1.4056836","DOIUrl":null,"url":null,"abstract":"Abstract This technical brief proposes a defect recognition model to recognize four typical defects of phased array ultrasonic testing (PA-UT) images for electrofusion (EF) joints. PA-UT has been proved to be the most feasible way to inspect defects in EF joints of polyethylene pipes. The recognition of defects in PA-UT images relies on the experience of operators, resulting in inconsistent defective detection rate and low recognition speed. The proposed recognition model was composed of an anomaly detection model and a defect detection model. The anomaly detection model recognized anomalies in PA-UT images, meeting the requirement of real-time recognition for practical inspection. The defect detection model classified and located defects in abnormal PA-UT images, achieving high accuracy of defects recognition. By comparing detection models, optimizing parameters and augmenting dataset, the anomaly detection model and defect detection model reached a good combination of accuracy and speed.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":"122 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional Neural Network Based Defect Recognition Model for Phased Array Ultrasonic Testing Images of Electrofusion Joints\",\"authors\":\"Yangji Tao, Jianfeng Shi, Weican Guo, Jinyang Zheng\",\"doi\":\"10.1115/1.4056836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This technical brief proposes a defect recognition model to recognize four typical defects of phased array ultrasonic testing (PA-UT) images for electrofusion (EF) joints. PA-UT has been proved to be the most feasible way to inspect defects in EF joints of polyethylene pipes. The recognition of defects in PA-UT images relies on the experience of operators, resulting in inconsistent defective detection rate and low recognition speed. The proposed recognition model was composed of an anomaly detection model and a defect detection model. The anomaly detection model recognized anomalies in PA-UT images, meeting the requirement of real-time recognition for practical inspection. The defect detection model classified and located defects in abnormal PA-UT images, achieving high accuracy of defects recognition. By comparing detection models, optimizing parameters and augmenting dataset, the anomaly detection model and defect detection model reached a good combination of accuracy and speed.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056836\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056836","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Convolutional Neural Network Based Defect Recognition Model for Phased Array Ultrasonic Testing Images of Electrofusion Joints
Abstract This technical brief proposes a defect recognition model to recognize four typical defects of phased array ultrasonic testing (PA-UT) images for electrofusion (EF) joints. PA-UT has been proved to be the most feasible way to inspect defects in EF joints of polyethylene pipes. The recognition of defects in PA-UT images relies on the experience of operators, resulting in inconsistent defective detection rate and low recognition speed. The proposed recognition model was composed of an anomaly detection model and a defect detection model. The anomaly detection model recognized anomalies in PA-UT images, meeting the requirement of real-time recognition for practical inspection. The defect detection model classified and located defects in abnormal PA-UT images, achieving high accuracy of defects recognition. By comparing detection models, optimizing parameters and augmenting dataset, the anomaly detection model and defect detection model reached a good combination of accuracy and speed.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.