完全扩展的$r$-spin tqft

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2023-10-15 DOI:10.4171/qt/193
Nils Carqueville, Lóránt Szegedy
{"title":"完全扩展的$r$-spin tqft","authors":"Nils Carqueville, Lóránt Szegedy","doi":"10.4171/qt/193","DOIUrl":null,"url":null,"abstract":"We prove the $r$-spin cobordism hypothesis in the setting of (weak) 2-categories for every positive integer $r$: the 2-groupoid of 2-dimensional fully extended $r$-spin TQFTs with given target is equivalent to the homotopy fixed points of an induced $\\mathrm{Spin}\\_2^r$-action. In particular, such TQFTs are classified by fully dualisable objects together with a trivialisation of the $r$th power of their Serre automorphisms. For $r=1$, we recover the oriented case (on which our proof builds), while ordinary spin structures correspond to $r=2$. To construct examples, we explicitly describe $\\mathrm{Spin}\\_2^r$-homotopy fixed points in the equivariant completion of any symmetric monoidal 2-category. We also show that every object in a 2-category of Landau–Ginzburg models gives rise to fully extended spin TQFTs and that half of these do not factor through the oriented bordism 2-category.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"238 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fully extended $r$-spin TQFTs\",\"authors\":\"Nils Carqueville, Lóránt Szegedy\",\"doi\":\"10.4171/qt/193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the $r$-spin cobordism hypothesis in the setting of (weak) 2-categories for every positive integer $r$: the 2-groupoid of 2-dimensional fully extended $r$-spin TQFTs with given target is equivalent to the homotopy fixed points of an induced $\\\\mathrm{Spin}\\\\_2^r$-action. In particular, such TQFTs are classified by fully dualisable objects together with a trivialisation of the $r$th power of their Serre automorphisms. For $r=1$, we recover the oriented case (on which our proof builds), while ordinary spin structures correspond to $r=2$. To construct examples, we explicitly describe $\\\\mathrm{Spin}\\\\_2^r$-homotopy fixed points in the equivariant completion of any symmetric monoidal 2-category. We also show that every object in a 2-category of Landau–Ginzburg models gives rise to fully extended spin TQFTs and that half of these do not factor through the oriented bordism 2-category.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"238 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/qt/193\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/qt/193","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了在(弱)2范畴下对于每一个正整数$r$的$r$-自旋协同假设:具有给定目标的二维完全扩展$r$-自旋tqft的2群等价于一个诱导$\ mathm {Spin}\_2^r$-作用的同伦不动点。特别地,这样的tqft是由完全可二象化的对象以及它们的Serre自同构的r次幂来分类的。对于$r=1$,我们恢复定向情况(我们的证明建立在此基础上),而普通自旋结构对应于$r=2$。为了构造例子,我们显式地描述了任意对称一元2范畴的等变补全中的$\ mathm {Spin}\_2^r$-同伦不动点。我们还证明了Landau-Ginzburg模型中2类中的每个物体都会产生完全扩展的自旋tqft,并且其中一半不通过定向边界2类因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully extended $r$-spin TQFTs
We prove the $r$-spin cobordism hypothesis in the setting of (weak) 2-categories for every positive integer $r$: the 2-groupoid of 2-dimensional fully extended $r$-spin TQFTs with given target is equivalent to the homotopy fixed points of an induced $\mathrm{Spin}\_2^r$-action. In particular, such TQFTs are classified by fully dualisable objects together with a trivialisation of the $r$th power of their Serre automorphisms. For $r=1$, we recover the oriented case (on which our proof builds), while ordinary spin structures correspond to $r=2$. To construct examples, we explicitly describe $\mathrm{Spin}\_2^r$-homotopy fixed points in the equivariant completion of any symmetric monoidal 2-category. We also show that every object in a 2-category of Landau–Ginzburg models gives rise to fully extended spin TQFTs and that half of these do not factor through the oriented bordism 2-category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信