从转录组学数据中开发几个重要的SNP标记用于镰形镰刀(Sengon Falcataria falcata)的选择Greuter,抗Boktor茎螟虫和瘿锈病

Q3 Agricultural and Biological Sciences
Aditya Nugroho, Vilda Puji Dini Anita, Deden Derajat Matra, Iskandar Zulkarnaen Siregar, Ulfah Juniarti Siregar
{"title":"从转录组学数据中开发几个重要的SNP标记用于镰形镰刀(Sengon Falcataria falcata)的选择Greuter,抗Boktor茎螟虫和瘿锈病","authors":"Aditya Nugroho, Vilda Puji Dini Anita, Deden Derajat Matra, Iskandar Zulkarnaen Siregar, Ulfah Juniarti Siregar","doi":"10.4308/hjb.31.1.110-125","DOIUrl":null,"url":null,"abstract":"Sengon (Falcataria falcata (L.) Greuter & R. Rankin) plantations in Indonesia are threatened by attacks from Boktor stem borers and gall rust disease. Controlling pests and diseases is difficult; therefore, planting resistant trees obtained from tree selection programs is necessary. Currently, genomic breeding often incorporates GWAS, which uses thousands of SNP markers to identify markers with significant associations with the traits studied. This study aimed to bypass such expensive studies by identifying and developing SNP markers from sequences of putative resistance genes to Boktor stem borer and gall rust disease, identified from sengon transcriptomic data analysis. A total of 496,194 putative SNP sites were identified from transcriptomic sequences using the SAMtools and BFCtools programs, of which 119 SNP sites were associated with resistance genes. Of the 101 non-synonymous SNPs selected, only 12 were located in the conserved domain of each gene and were used for primer design. Of the 13 primers designed, only 10 were successfully amplified. Validation of 10 developed SNP markers on 100 sengon accessions using the HRM method confirmed a significant association between SNP markers and resistance traits, with a -log 10 (P-value) between 10.49 and 16.63. A few SNPs markers developed from putative resistance gene sequences are associated with resistance traits in sengon. Therefore, the SNP markers could be applied in selection programs for sengon trees resistant to Boktor stem borers and gall rust disease.","PeriodicalId":12927,"journal":{"name":"HAYATI Journal of Biosciences","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Few Significant SNP Markers from Transcriptomic Data for Selection of Sengon (Falcataria falcata (L.) Greuter & R. Rankin) Resistant to Boktor Stem Borer and Gall Rust Disease\",\"authors\":\"Aditya Nugroho, Vilda Puji Dini Anita, Deden Derajat Matra, Iskandar Zulkarnaen Siregar, Ulfah Juniarti Siregar\",\"doi\":\"10.4308/hjb.31.1.110-125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sengon (Falcataria falcata (L.) Greuter & R. Rankin) plantations in Indonesia are threatened by attacks from Boktor stem borers and gall rust disease. Controlling pests and diseases is difficult; therefore, planting resistant trees obtained from tree selection programs is necessary. Currently, genomic breeding often incorporates GWAS, which uses thousands of SNP markers to identify markers with significant associations with the traits studied. This study aimed to bypass such expensive studies by identifying and developing SNP markers from sequences of putative resistance genes to Boktor stem borer and gall rust disease, identified from sengon transcriptomic data analysis. A total of 496,194 putative SNP sites were identified from transcriptomic sequences using the SAMtools and BFCtools programs, of which 119 SNP sites were associated with resistance genes. Of the 101 non-synonymous SNPs selected, only 12 were located in the conserved domain of each gene and were used for primer design. Of the 13 primers designed, only 10 were successfully amplified. Validation of 10 developed SNP markers on 100 sengon accessions using the HRM method confirmed a significant association between SNP markers and resistance traits, with a -log 10 (P-value) between 10.49 and 16.63. A few SNPs markers developed from putative resistance gene sequences are associated with resistance traits in sengon. Therefore, the SNP markers could be applied in selection programs for sengon trees resistant to Boktor stem borers and gall rust disease.\",\"PeriodicalId\":12927,\"journal\":{\"name\":\"HAYATI Journal of Biosciences\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HAYATI Journal of Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4308/hjb.31.1.110-125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HAYATI Journal of Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4308/hjb.31.1.110-125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

Sengon (Falcataria falcata)Greuter,印度尼西亚的R. Rankin)种植园受到Boktor茎螟虫和瘿锈病的威胁。控制病虫害很困难;因此,有必要种植从树木选择计划中获得的抗性树木。目前,基因组育种通常采用GWAS,它使用数千个SNP标记来识别与所研究性状显著相关的标记。这项研究旨在通过从从sengon转录组数据分析中鉴定出的Boktor茎螟虫和瘿锈病的推定抗性基因序列中鉴定和开发SNP标记,从而绕过这些昂贵的研究。利用SAMtools和BFCtools程序从转录组序列中共鉴定出496,194个推测SNP位点,其中119个位点与抗性基因相关。在所选择的101个非同义snp中,只有12个位于每个基因的保守结构域,并用于引物设计。在设计的13条引物中,只有10条被成功扩增。利用HRM方法对100份参子材料的10个已开发SNP标记进行验证,证实SNP标记与抗性性状之间存在显著相关性,p值在10.49 ~ 16.63之间,p值为-log 10。从假定的抗性基因序列中开发的一些snp标记与桑果的抗性性状有关。因此,SNP标记可应用于抗Boktor茎螟虫和胆锈病的选育方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Few Significant SNP Markers from Transcriptomic Data for Selection of Sengon (Falcataria falcata (L.) Greuter & R. Rankin) Resistant to Boktor Stem Borer and Gall Rust Disease
Sengon (Falcataria falcata (L.) Greuter & R. Rankin) plantations in Indonesia are threatened by attacks from Boktor stem borers and gall rust disease. Controlling pests and diseases is difficult; therefore, planting resistant trees obtained from tree selection programs is necessary. Currently, genomic breeding often incorporates GWAS, which uses thousands of SNP markers to identify markers with significant associations with the traits studied. This study aimed to bypass such expensive studies by identifying and developing SNP markers from sequences of putative resistance genes to Boktor stem borer and gall rust disease, identified from sengon transcriptomic data analysis. A total of 496,194 putative SNP sites were identified from transcriptomic sequences using the SAMtools and BFCtools programs, of which 119 SNP sites were associated with resistance genes. Of the 101 non-synonymous SNPs selected, only 12 were located in the conserved domain of each gene and were used for primer design. Of the 13 primers designed, only 10 were successfully amplified. Validation of 10 developed SNP markers on 100 sengon accessions using the HRM method confirmed a significant association between SNP markers and resistance traits, with a -log 10 (P-value) between 10.49 and 16.63. A few SNPs markers developed from putative resistance gene sequences are associated with resistance traits in sengon. Therefore, the SNP markers could be applied in selection programs for sengon trees resistant to Boktor stem borers and gall rust disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HAYATI Journal of Biosciences
HAYATI Journal of Biosciences Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
1.10
自引率
0.00%
发文量
75
审稿时长
24 weeks
期刊介绍: HAYATI Journal of Biosciences (HAYATI J Biosci) is an international peer-reviewed and open access journal that publishes significant and important research from all area of biosciences fields such as biodiversity, biosystematics, ecology, physiology, behavior, genetics and biotechnology. All life forms, ranging from microbes, fungi, plants, animals, and human, including virus, are covered by HAYATI J Biosci. HAYATI J Biosci published by Department of Biology, Bogor Agricultural University, Indonesia and the Indonesian Society for Biology. We accept submission from all over the world. Our Editorial Board members are prominent and active international researchers in biosciences fields who ensure efficient, fair, and constructive peer-review process. All accepted articles will be published on payment of an article-processing charge, and will be freely available to all readers with worldwide visibility and coverage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信