锥虫耐受性和锥虫易感性牛的全血转录组分析强调了刚果锥虫感染期间代谢和免疫反应的差异调节

Moana Peylhard, David Berthier, Guiguigbaza-Kossigan Dayo, Isabelle Chantal, Souleymane Sylla, Sabine Nidelet, Emeric Dubois, Guillaume Martin, Guilhem Sempéré, Laurence Flori, Sophie Thévenon
{"title":"锥虫耐受性和锥虫易感性牛的全血转录组分析强调了刚果锥虫感染期间代谢和免疫反应的差异调节","authors":"Moana Peylhard, David Berthier, Guiguigbaza-Kossigan Dayo, Isabelle Chantal, Souleymane Sylla, Sabine Nidelet, Emeric Dubois, Guillaume Martin, Guilhem Sempéré, Laurence Flori, Sophie Thévenon","doi":"10.24072/pcjournal.239","DOIUrl":null,"url":null,"abstract":"Animal African trypanosomosis, caused by blood protozoan parasites transmitted mainly by tsetse flies, represents a major constraint for millions of cattle in sub-Saharan Africa. Exposed cattle include trypanosusceptible indicine breeds, severely affected by the disease, and West African taurine breeds called trypanotolerant owing to their ability to control parasite development, survive and grow in enzootic areas. Until now the genetic basis of trypanotolerance remains unclear. Here, to improve knowledge of the biological processes involved in trypanotolerance versus trypanosusceptibility, we identified bovine genes differentially expressed in five West African cattle breeds during an experimental infection by Trypanosoma congolense and their biological functions. To this end, whole blood genome-wide transcriptome of three trypanotolerant taurine breeds (N’Dama, Lagune and Baoulé), one susceptible zebu (Zebu Fulani) and one African taurine x zebu admixed breed (Borgou) were profiled by RNA sequencing at four time points, one before and three during infection. As expected, infection had a major impact on cattle blood transcriptome regardless of the breed. The functional analysis of differentially expressed genes over time in each breed confirmed an early activation of the innate immune response, followed by an activation of the humoral response and an inhibition of T cell functions at the chronic stage of infection. More importantly, we highlighted overlooked features, such as a strong disturbance in host metabolism and cellular energy production that differentiates trypanotolerant and trypanosusceptible breeds. N’Dama breed showed the earliest regulation of immune response, associated with a strong activation of cellular energy production, also observed in Lagune, and to a lesser extent in Baoulé. Susceptible Zebu Fulani breed differed from other breeds by the strongest modification in lipid metabolism regulation. Overall, this study provides a better understanding of the biological mechanisms at work during infection, especially concerning the interplay between immunity and metabolism that seems differentially regulated depending on the cattle breeds.","PeriodicalId":74413,"journal":{"name":"Peer community journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whole blood transcriptome profiles of trypanotolerant and trypanosusceptible cattle highlight a differential modulation of metabolism and immune response during infection by Trypanosoma congolense\",\"authors\":\"Moana Peylhard, David Berthier, Guiguigbaza-Kossigan Dayo, Isabelle Chantal, Souleymane Sylla, Sabine Nidelet, Emeric Dubois, Guillaume Martin, Guilhem Sempéré, Laurence Flori, Sophie Thévenon\",\"doi\":\"10.24072/pcjournal.239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Animal African trypanosomosis, caused by blood protozoan parasites transmitted mainly by tsetse flies, represents a major constraint for millions of cattle in sub-Saharan Africa. Exposed cattle include trypanosusceptible indicine breeds, severely affected by the disease, and West African taurine breeds called trypanotolerant owing to their ability to control parasite development, survive and grow in enzootic areas. Until now the genetic basis of trypanotolerance remains unclear. Here, to improve knowledge of the biological processes involved in trypanotolerance versus trypanosusceptibility, we identified bovine genes differentially expressed in five West African cattle breeds during an experimental infection by Trypanosoma congolense and their biological functions. To this end, whole blood genome-wide transcriptome of three trypanotolerant taurine breeds (N’Dama, Lagune and Baoulé), one susceptible zebu (Zebu Fulani) and one African taurine x zebu admixed breed (Borgou) were profiled by RNA sequencing at four time points, one before and three during infection. As expected, infection had a major impact on cattle blood transcriptome regardless of the breed. The functional analysis of differentially expressed genes over time in each breed confirmed an early activation of the innate immune response, followed by an activation of the humoral response and an inhibition of T cell functions at the chronic stage of infection. More importantly, we highlighted overlooked features, such as a strong disturbance in host metabolism and cellular energy production that differentiates trypanotolerant and trypanosusceptible breeds. N’Dama breed showed the earliest regulation of immune response, associated with a strong activation of cellular energy production, also observed in Lagune, and to a lesser extent in Baoulé. Susceptible Zebu Fulani breed differed from other breeds by the strongest modification in lipid metabolism regulation. Overall, this study provides a better understanding of the biological mechanisms at work during infection, especially concerning the interplay between immunity and metabolism that seems differentially regulated depending on the cattle breeds.\",\"PeriodicalId\":74413,\"journal\":{\"name\":\"Peer community journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer community journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24072/pcjournal.239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer community journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24072/pcjournal.239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非洲动物锥虫病由主要由采采蝇传播的血液原生动物寄生虫引起,是撒哈拉以南非洲数百万牛的主要制约因素。暴露的牛包括受该病严重影响的锥虫易感牛品种,以及被称为锥虫耐受性的西非牛磺酸牛品种,因为它们能够控制寄生虫的发育、在地方性动物患病地区存活和生长。到目前为止,锥虫耐受性的遗传基础仍不清楚。在这里,为了提高对锥虫耐受性和锥虫易感性的生物学过程的认识,我们鉴定了五种西非牛品种在实验性刚果锥虫感染期间的牛基因差异表达及其生物学功能。为此,在感染前和感染中分别测定了3个耐虫牛磺酸品种(N’dama、Lagune和baoul)、1个易感瘤牛(zebu Fulani)和1个非洲牛磺酸与瘤牛杂交品种(Borgou)的全血全基因组转录组。正如预期的那样,无论品种如何,感染对牛血液转录组都有重大影响。随着时间的推移,对每个品种的差异表达基因的功能分析证实了先天免疫反应的早期激活,随后是体液反应的激活和慢性感染阶段T细胞功能的抑制。更重要的是,我们强调了被忽视的特征,例如宿主代谢和细胞能量产生的强烈干扰,这是区分锥虫耐药和锥虫敏感品种的关键。N 'Dama品种显示出最早的免疫反应调节,与细胞能量产生的强烈激活有关,在Lagune也观察到,在baoul也观察到程度较低。敏感品种瘤胃富拉尼与其他品种相比,脂质代谢调节变化最大。总的来说,这项研究提供了对感染过程中起作用的生物学机制的更好理解,特别是关于免疫和代谢之间的相互作用,这似乎取决于牛的品种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Whole blood transcriptome profiles of trypanotolerant and trypanosusceptible cattle highlight a differential modulation of metabolism and immune response during infection by Trypanosoma congolense
Animal African trypanosomosis, caused by blood protozoan parasites transmitted mainly by tsetse flies, represents a major constraint for millions of cattle in sub-Saharan Africa. Exposed cattle include trypanosusceptible indicine breeds, severely affected by the disease, and West African taurine breeds called trypanotolerant owing to their ability to control parasite development, survive and grow in enzootic areas. Until now the genetic basis of trypanotolerance remains unclear. Here, to improve knowledge of the biological processes involved in trypanotolerance versus trypanosusceptibility, we identified bovine genes differentially expressed in five West African cattle breeds during an experimental infection by Trypanosoma congolense and their biological functions. To this end, whole blood genome-wide transcriptome of three trypanotolerant taurine breeds (N’Dama, Lagune and Baoulé), one susceptible zebu (Zebu Fulani) and one African taurine x zebu admixed breed (Borgou) were profiled by RNA sequencing at four time points, one before and three during infection. As expected, infection had a major impact on cattle blood transcriptome regardless of the breed. The functional analysis of differentially expressed genes over time in each breed confirmed an early activation of the innate immune response, followed by an activation of the humoral response and an inhibition of T cell functions at the chronic stage of infection. More importantly, we highlighted overlooked features, such as a strong disturbance in host metabolism and cellular energy production that differentiates trypanotolerant and trypanosusceptible breeds. N’Dama breed showed the earliest regulation of immune response, associated with a strong activation of cellular energy production, also observed in Lagune, and to a lesser extent in Baoulé. Susceptible Zebu Fulani breed differed from other breeds by the strongest modification in lipid metabolism regulation. Overall, this study provides a better understanding of the biological mechanisms at work during infection, especially concerning the interplay between immunity and metabolism that seems differentially regulated depending on the cattle breeds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信