混合动力点火系统的数学模型

Quoc Am Do
{"title":"混合动力点火系统的数学模型","authors":"Quoc Am Do","doi":"10.54644/jte.79.2023.1420","DOIUrl":null,"url":null,"abstract":"In the operation of a car's ignition system, the primary ignition coil is responsible for generating a high voltage that typically ranges from around 100V to 300V. However, this self-induced electromotive force (emf) can lead to certain negative effects such as switch breakdown, inductive noise, and secondary voltage drop. This article introduces a novel hybrid ignition system designed for a 4-cylinder engine. This innovative system is a combination of capacitive discharge ignition system (CDI) and induction discharge ignition (IDI) system. The excess electromagnetic force energy (emf) generated during the induction ignition stage will be used in the capacitive ignition. Thereby contributing to limiting the negative effects as mentioned. Forming and solving the mathematical model for the hybrid ignition system mentioned above enables us to analyze the transient responses of the primary current (i1) and primary voltage (V1). These instantaneous responses are crucial in understanding the behavior of the composite ignition circuit and calculating key parameters such as ignition energy during the inductive and capacitive ignition stages, as well as the magnitude of the maximum secondary voltage (V2m). Furthermore, the article also presents experimental results from the hybrid ignition system to complement the theoretical analysis.","PeriodicalId":496503,"journal":{"name":"Tạp chí Giáo dục Kỹ thuật","volume":"135 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mathematical Model for a Hybrid Ignition System\",\"authors\":\"Quoc Am Do\",\"doi\":\"10.54644/jte.79.2023.1420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the operation of a car's ignition system, the primary ignition coil is responsible for generating a high voltage that typically ranges from around 100V to 300V. However, this self-induced electromotive force (emf) can lead to certain negative effects such as switch breakdown, inductive noise, and secondary voltage drop. This article introduces a novel hybrid ignition system designed for a 4-cylinder engine. This innovative system is a combination of capacitive discharge ignition system (CDI) and induction discharge ignition (IDI) system. The excess electromagnetic force energy (emf) generated during the induction ignition stage will be used in the capacitive ignition. Thereby contributing to limiting the negative effects as mentioned. Forming and solving the mathematical model for the hybrid ignition system mentioned above enables us to analyze the transient responses of the primary current (i1) and primary voltage (V1). These instantaneous responses are crucial in understanding the behavior of the composite ignition circuit and calculating key parameters such as ignition energy during the inductive and capacitive ignition stages, as well as the magnitude of the maximum secondary voltage (V2m). Furthermore, the article also presents experimental results from the hybrid ignition system to complement the theoretical analysis.\",\"PeriodicalId\":496503,\"journal\":{\"name\":\"Tạp chí Giáo dục Kỹ thuật\",\"volume\":\"135 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tạp chí Giáo dục Kỹ thuật\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54644/jte.79.2023.1420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tạp chí Giáo dục Kỹ thuật","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54644/jte.79.2023.1420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在汽车点火系统的运行中,主点火线圈负责产生高电压,通常在100V到300V之间。然而,这种自感电动势(emf)会导致某些负面影响,如开关击穿、感应噪声和二次电压下降。本文介绍了一种用于四缸发动机的新型混合点火系统。该创新系统是电容放电点火系统(CDI)和感应放电点火系统(IDI)的结合。在感应点火阶段产生的多余电磁力能(emf)将用于电容点火。从而有助于限制上述的负面影响。通过建立并求解上述混合点火系统的数学模型,我们可以分析一次电流(i1)和一次电压(V1)的瞬态响应。这些瞬时响应对于理解复合点火电路的行为和计算关键参数(如感应和电容点火阶段的点火能量)以及最大二次电压(V2m)的大小至关重要。此外,本文还给出了混合点火系统的实验结果来补充理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mathematical Model for a Hybrid Ignition System
In the operation of a car's ignition system, the primary ignition coil is responsible for generating a high voltage that typically ranges from around 100V to 300V. However, this self-induced electromotive force (emf) can lead to certain negative effects such as switch breakdown, inductive noise, and secondary voltage drop. This article introduces a novel hybrid ignition system designed for a 4-cylinder engine. This innovative system is a combination of capacitive discharge ignition system (CDI) and induction discharge ignition (IDI) system. The excess electromagnetic force energy (emf) generated during the induction ignition stage will be used in the capacitive ignition. Thereby contributing to limiting the negative effects as mentioned. Forming and solving the mathematical model for the hybrid ignition system mentioned above enables us to analyze the transient responses of the primary current (i1) and primary voltage (V1). These instantaneous responses are crucial in understanding the behavior of the composite ignition circuit and calculating key parameters such as ignition energy during the inductive and capacitive ignition stages, as well as the magnitude of the maximum secondary voltage (V2m). Furthermore, the article also presents experimental results from the hybrid ignition system to complement the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信