HyDe:桥式 PCM/FeFET/SRAM 副搜索,用于优化模拟 IMC 平台的面积和能效

IF 3.7 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Abhiroop Bhattacharjee;Abhishek Moitra;Priyadarshini Panda
{"title":"HyDe:桥式 PCM/FeFET/SRAM 副搜索,用于优化模拟 IMC 平台的面积和能效","authors":"Abhiroop Bhattacharjee;Abhishek Moitra;Priyadarshini Panda","doi":"10.1109/JETCAS.2023.3327748","DOIUrl":null,"url":null,"abstract":"Today, there are a plethora of In-Memory Computing (IMC) devices- SRAMs, PCMs & FeFETs, that emulate convolutions on crossbar-arrays with high throughput. Each IMC device offers its own pros & cons during inference of Deep Neural Networks (DNNs) on crossbars in terms of area overhead, programming energy and non-idealities. A design-space exploration is, therefore, imperative to derive a hybrid-device architecture optimized for accurate DNN inference under the impact of non-idealities from multiple devices, while maintaining competitive area & energy-efficiencies. We propose a two-phase search framework (HyDe) that exploits the best of all worlds offered by multiple devices to determine an optimal hybrid-device architecture for a given DNN topology. Our hybrid models achieve upto \n<inline-formula> <tex-math>$2.30-2.74\\times $ </tex-math></inline-formula>\n higher \n<inline-formula> <tex-math>$TOPS/mm^{2}$ </tex-math></inline-formula>\n at 22 – 26% higher energy-efficiencies than baseline homogeneous models for a VGG16 DNN topology. We further propose a feasible implementation of the HyDe-derived hybrid-device architectures in the 2.5D design space using chiplets to reduce design effort and cost in the hardware fabrication involving multiple technology processes.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"13 4","pages":"1073-1082"},"PeriodicalIF":3.7000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HyDe: A brid PCM/FeFET/SRAM vice-Search for Optimizing Area and Energy-Efficiencies in Analog IMC Platforms\",\"authors\":\"Abhiroop Bhattacharjee;Abhishek Moitra;Priyadarshini Panda\",\"doi\":\"10.1109/JETCAS.2023.3327748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, there are a plethora of In-Memory Computing (IMC) devices- SRAMs, PCMs & FeFETs, that emulate convolutions on crossbar-arrays with high throughput. Each IMC device offers its own pros & cons during inference of Deep Neural Networks (DNNs) on crossbars in terms of area overhead, programming energy and non-idealities. A design-space exploration is, therefore, imperative to derive a hybrid-device architecture optimized for accurate DNN inference under the impact of non-idealities from multiple devices, while maintaining competitive area & energy-efficiencies. We propose a two-phase search framework (HyDe) that exploits the best of all worlds offered by multiple devices to determine an optimal hybrid-device architecture for a given DNN topology. Our hybrid models achieve upto \\n<inline-formula> <tex-math>$2.30-2.74\\\\times $ </tex-math></inline-formula>\\n higher \\n<inline-formula> <tex-math>$TOPS/mm^{2}$ </tex-math></inline-formula>\\n at 22 – 26% higher energy-efficiencies than baseline homogeneous models for a VGG16 DNN topology. We further propose a feasible implementation of the HyDe-derived hybrid-device architectures in the 2.5D design space using chiplets to reduce design effort and cost in the hardware fabrication involving multiple technology processes.\",\"PeriodicalId\":48827,\"journal\":{\"name\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"volume\":\"13 4\",\"pages\":\"1073-1082\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10296888/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10296888/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

如今,有大量的内存计算(IMC)设备--SRAM、PCM 和 FeFET--能以高吞吐量模拟交叉阵列上的卷积。在交叉棒上进行深度神经网络(DNN)推理时,每种 IMC 设备在面积开销、编程能量和非理想性方面都有各自的优缺点。因此,设计空间探索势在必行,以便在多个设备的非理想性影响下,推导出优化的混合设备架构,实现精确的 DNN 推断,同时保持有竞争力的面积和能效。我们提出了一个两阶段搜索框架(HyDe),它利用多种设备提供的各种优势,为给定的 DNN 拓扑确定最佳混合设备架构。对于 VGG16 DNN 拓扑,我们的混合模型比基线同构模型的能效高出 22 - 26%,TOPS/mm^{2}$比基线同构模型高出多达 2.30 - 2.74 倍。我们进一步提出了在 2.5D 设计空间中使用芯片实现 HyDe 衍生混合器件架构的可行方案,以减少涉及多种技术工艺的硬件制造过程中的设计工作量和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HyDe: A brid PCM/FeFET/SRAM vice-Search for Optimizing Area and Energy-Efficiencies in Analog IMC Platforms
Today, there are a plethora of In-Memory Computing (IMC) devices- SRAMs, PCMs & FeFETs, that emulate convolutions on crossbar-arrays with high throughput. Each IMC device offers its own pros & cons during inference of Deep Neural Networks (DNNs) on crossbars in terms of area overhead, programming energy and non-idealities. A design-space exploration is, therefore, imperative to derive a hybrid-device architecture optimized for accurate DNN inference under the impact of non-idealities from multiple devices, while maintaining competitive area & energy-efficiencies. We propose a two-phase search framework (HyDe) that exploits the best of all worlds offered by multiple devices to determine an optimal hybrid-device architecture for a given DNN topology. Our hybrid models achieve upto $2.30-2.74\times $ higher $TOPS/mm^{2}$ at 22 – 26% higher energy-efficiencies than baseline homogeneous models for a VGG16 DNN topology. We further propose a feasible implementation of the HyDe-derived hybrid-device architectures in the 2.5D design space using chiplets to reduce design effort and cost in the hardware fabrication involving multiple technology processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信