{"title":"利用psd分组深度回声状态网络增强基于脑电图的情绪识别","authors":"Samar Bouazizi, Emna Benmohamed, Hela Ltifi","doi":"10.3897/jucs.98789","DOIUrl":null,"url":null,"abstract":"Emotions are a crucial aspect of daily life and play a vital role in shaping human inter-actions. The purpose of this paper is to introduce a novel approach to recognize human emotions through the use of electroencephalogram (EEG) signals. To recognize these signals for emotion prediction, we employ a paradigm of Reservoir Computing (RC), called Echo State Network (ESN). In our analysis, we focus on two specific classes of emotion recognition: H/L Arousal and H/L Valence. We suggest using the Deep ESN model in conjunction with the Welch Power Spectral Density (Wlech PSD) method for emotion classification and feature extraction. Furthermore, we feed the selected features to a grouped ESN for recognizing emotions. Our approach is validated on the well-known DEAP benchmark, which includes the EEG data from 32 participants. The proposed model achieved 89.32% accuracy for H/L Arousal and 91.21% accuracy for H/L Valence on the DEAP dataset. The obtained results demonstrate the effectiveness of our approach, which yields good performance compared to existing models of emotion analysis based on EEG.","PeriodicalId":54757,"journal":{"name":"Journal of Universal Computer Science","volume":"29 12","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing EEG-based emotion recognition using PSD-Grouped Deep Echo State Network\",\"authors\":\"Samar Bouazizi, Emna Benmohamed, Hela Ltifi\",\"doi\":\"10.3897/jucs.98789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotions are a crucial aspect of daily life and play a vital role in shaping human inter-actions. The purpose of this paper is to introduce a novel approach to recognize human emotions through the use of electroencephalogram (EEG) signals. To recognize these signals for emotion prediction, we employ a paradigm of Reservoir Computing (RC), called Echo State Network (ESN). In our analysis, we focus on two specific classes of emotion recognition: H/L Arousal and H/L Valence. We suggest using the Deep ESN model in conjunction with the Welch Power Spectral Density (Wlech PSD) method for emotion classification and feature extraction. Furthermore, we feed the selected features to a grouped ESN for recognizing emotions. Our approach is validated on the well-known DEAP benchmark, which includes the EEG data from 32 participants. The proposed model achieved 89.32% accuracy for H/L Arousal and 91.21% accuracy for H/L Valence on the DEAP dataset. The obtained results demonstrate the effectiveness of our approach, which yields good performance compared to existing models of emotion analysis based on EEG.\",\"PeriodicalId\":54757,\"journal\":{\"name\":\"Journal of Universal Computer Science\",\"volume\":\"29 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Universal Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/jucs.98789\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Universal Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/jucs.98789","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Enhancing EEG-based emotion recognition using PSD-Grouped Deep Echo State Network
Emotions are a crucial aspect of daily life and play a vital role in shaping human inter-actions. The purpose of this paper is to introduce a novel approach to recognize human emotions through the use of electroencephalogram (EEG) signals. To recognize these signals for emotion prediction, we employ a paradigm of Reservoir Computing (RC), called Echo State Network (ESN). In our analysis, we focus on two specific classes of emotion recognition: H/L Arousal and H/L Valence. We suggest using the Deep ESN model in conjunction with the Welch Power Spectral Density (Wlech PSD) method for emotion classification and feature extraction. Furthermore, we feed the selected features to a grouped ESN for recognizing emotions. Our approach is validated on the well-known DEAP benchmark, which includes the EEG data from 32 participants. The proposed model achieved 89.32% accuracy for H/L Arousal and 91.21% accuracy for H/L Valence on the DEAP dataset. The obtained results demonstrate the effectiveness of our approach, which yields good performance compared to existing models of emotion analysis based on EEG.
期刊介绍:
J.UCS - The Journal of Universal Computer Science - is a high-quality electronic publication that deals with all aspects of computer science. J.UCS has been appearing monthly since 1995 and is thus one of the oldest electronic journals with uninterrupted publication since its foundation.