H1和BMO鞅的积和换向子

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Aline Bonami , Yong Jiao , Guangheng Xie , Dachun Yang , Dejian Zhou
{"title":"H1和BMO鞅的积和换向子","authors":"Aline Bonami ,&nbsp;Yong Jiao ,&nbsp;Guangheng Xie ,&nbsp;Dachun Yang ,&nbsp;Dejian Zhou","doi":"10.1016/j.matpur.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>f</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> and <span><math><mi>g</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> be two martingales related to the probability space <span><math><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>F</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> equipped with the filtration <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span>. Assume that <em>f</em><span> is in the martingale Hardy space </span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <em>g</em> is in its dual space, namely the martingale BMO. Then the semi-martingale <span><math><mi>f</mi><mo>⋅</mo><mi>g</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> may be written as the sum<span><span><span><math><mi>f</mi><mo>⋅</mo><mi>g</mi><mo>=</mo><mi>G</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>+</mo><mi>L</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>.</mo></math></span></span></span> Here <span><math><mi>L</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><mi>L</mi><msub><mrow><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> with <span><math><mi>L</mi><msub><mrow><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> for any <span><math><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>, where <span><math><msub><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>:</mo><mo>=</mo><mn>0</mn><mo>=</mo><mo>:</mo><msub><mrow><mi>g</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub></math></span>. The authors prove that <span><math><mi>L</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span><span> is a process with bounded variation and limit in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, while <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> belongs to the martingale Hardy-Orlicz space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></math></span> associated with the Orlicz function<span><span><span><math><mi>Φ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>:</mo><mo>=</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>e</mi><mo>+</mo><mi>t</mi><mo>)</mo></mrow></mfrac><mo>,</mo><mspace></mspace><mo>∀</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>.</mo></math></span></span></span> The above bilinear decomposition <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></math></span> is sharp in the sense that, for particular martingales, the space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></math></span> cannot be replaced by a smaller space having a larger dual. As an application, the authors characterize the largest subspace of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, denoted by <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>b</mi></mrow></msubsup></math></span> with <span><math><mi>b</mi><mo>∈</mo><mrow><mi>BMO</mi></mrow></math></span><span>, such that the commutators </span><span><math><mo>[</mo><mi>T</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span> with classical sublinear operators <em>T</em> are bounded from <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>b</mi></mrow></msubsup></math></span> to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span>. This endpoint boundedness<span><span> of commutators allows the authors to give more applications. On the one hand, in the martingale setting, the authors obtain the endpoint estimates of commutators for both martingale transforms and martingale fractional integrals. On the other hand, in </span>harmonic analysis<span>, the authors establish the endpoint estimates of commutators both for the dyadic Hilbert transform<span> beyond doubling measures and for the maximal operator of Cesàro means of Walsh–Fourier series.</span></span></span></span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Products and commutators of martingales in H1 and BMO\",\"authors\":\"Aline Bonami ,&nbsp;Yong Jiao ,&nbsp;Guangheng Xie ,&nbsp;Dachun Yang ,&nbsp;Dejian Zhou\",\"doi\":\"10.1016/j.matpur.2023.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>f</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> and <span><math><mi>g</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> be two martingales related to the probability space <span><math><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>F</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> equipped with the filtration <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span>. Assume that <em>f</em><span> is in the martingale Hardy space </span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <em>g</em> is in its dual space, namely the martingale BMO. Then the semi-martingale <span><math><mi>f</mi><mo>⋅</mo><mi>g</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> may be written as the sum<span><span><span><math><mi>f</mi><mo>⋅</mo><mi>g</mi><mo>=</mo><mi>G</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>+</mo><mi>L</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>.</mo></math></span></span></span> Here <span><math><mi>L</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><mi>L</mi><msub><mrow><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> with <span><math><mi>L</mi><msub><mrow><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> for any <span><math><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>, where <span><math><msub><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>:</mo><mo>=</mo><mn>0</mn><mo>=</mo><mo>:</mo><msub><mrow><mi>g</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub></math></span>. The authors prove that <span><math><mi>L</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span><span> is a process with bounded variation and limit in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, while <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> belongs to the martingale Hardy-Orlicz space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></math></span> associated with the Orlicz function<span><span><span><math><mi>Φ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>:</mo><mo>=</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>e</mi><mo>+</mo><mi>t</mi><mo>)</mo></mrow></mfrac><mo>,</mo><mspace></mspace><mo>∀</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>.</mo></math></span></span></span> The above bilinear decomposition <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></math></span> is sharp in the sense that, for particular martingales, the space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></math></span> cannot be replaced by a smaller space having a larger dual. As an application, the authors characterize the largest subspace of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, denoted by <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>b</mi></mrow></msubsup></math></span> with <span><math><mi>b</mi><mo>∈</mo><mrow><mi>BMO</mi></mrow></math></span><span>, such that the commutators </span><span><math><mo>[</mo><mi>T</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span> with classical sublinear operators <em>T</em> are bounded from <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>b</mi></mrow></msubsup></math></span> to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span>. This endpoint boundedness<span><span> of commutators allows the authors to give more applications. On the one hand, in the martingale setting, the authors obtain the endpoint estimates of commutators for both martingale transforms and martingale fractional integrals. On the other hand, in </span>harmonic analysis<span>, the authors establish the endpoint estimates of commutators both for the dyadic Hilbert transform<span> beyond doubling measures and for the maximal operator of Cesàro means of Walsh–Fourier series.</span></span></span></span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

设f:=(fn)n∈Z+, g:=(gn)n∈Z+是与过滤(fn)n∈Z+的概率空间(Ω, f,P)相关的两个鞅。设f在鞅Hardy空间H1中,g在它的对偶空间中,即鞅BMO中。则半鞅f⋅g:=(fngn)n∈Z+可以写成sumf⋅g= g (f,g)+L(f,g)。L (f, g): = (L (f, g) n) n∈Z + L (f, g) n: n =∑k = 0(颗−颗−1)(gk−gk−1)对于任何n∈Z + f−1:= 0 =:g−1。作者证明了L(f,g)是一个在L1中有界变分和极限的过程,而g (f,g)属于与Orlicz functionΦ(t):=tlog (e+t),∀t∈[0,∞)相关的鞅Hardy-Orlicz空间Hlog。上面的双线性分解L1+Hlog在某种意义上是尖锐的,对于特定的鞅,空间L1+Hlog不能被具有较大对偶的较小空间所取代。作为应用,作者刻画了H1的最大子空间,用b∈BMO表示为H1b,使得具有经典次线性算子T的换向子[T,b]从H1b有界到L1。换向子的端点有界性允许作者给出更多的应用。一方面,在鞅条件下,得到了鞅变换和鞅分数阶积分对易子的端点估计。另一方面,在调和分析中,作者建立了沃尔什-傅里叶级数的超越倍测度的并矢希尔伯特变换和Cesàro均值的极大算子的对易子端点估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Products and commutators of martingales in H1 and BMO

Let f:=(fn)nZ+ and g:=(gn)nZ+ be two martingales related to the probability space (Ω,F,P) equipped with the filtration (Fn)nZ+. Assume that f is in the martingale Hardy space H1 and g is in its dual space, namely the martingale BMO. Then the semi-martingale fg:=(fngn)nZ+ may be written as the sumfg=G(f,g)+L(f,g). Here L(f,g):=(L(f,g)n)nZ+ with L(f,g)n:=k=0n(fkfk1)(gkgk1) for any nZ+, where f1:=0=:g1. The authors prove that L(f,g) is a process with bounded variation and limit in L1, while G(f,g) belongs to the martingale Hardy-Orlicz space Hlog associated with the Orlicz functionΦ(t):=tlog(e+t),t[0,). The above bilinear decomposition L1+Hlog is sharp in the sense that, for particular martingales, the space L1+Hlog cannot be replaced by a smaller space having a larger dual. As an application, the authors characterize the largest subspace of H1, denoted by H1b with bBMO, such that the commutators [T,b] with classical sublinear operators T are bounded from H1b to L1. This endpoint boundedness of commutators allows the authors to give more applications. On the one hand, in the martingale setting, the authors obtain the endpoint estimates of commutators for both martingale transforms and martingale fractional integrals. On the other hand, in harmonic analysis, the authors establish the endpoint estimates of commutators both for the dyadic Hilbert transform beyond doubling measures and for the maximal operator of Cesàro means of Walsh–Fourier series.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信