基于有限元分析的基坑设计数值优化

IF 1.7 Q3 ENGINEERING, GEOLOGICAL
Hauke Jürgens, Sascha Henke
{"title":"基于有限元分析的基坑设计数值优化","authors":"Hauke Jürgens, Sascha Henke","doi":"10.1007/s10706-023-02639-7","DOIUrl":null,"url":null,"abstract":"Abstract The present study focusses on optimising a single supported excavation pit to achieve a more economical design using finite element analyses. Two methods for automating the derivation of the excavation pit’s necessary embedment depth are presented, which involve either embedment depth reduction using additional calculation phases or adapting the entire model with renewed discretisation. The bending moments as well as the earth pressure distribution along the wall show good agreement, indicating that both methods are suitable for application. Subsequently, the feasibility of using optimisation algorithms (Particle Swarm Optimisation and Differential Evolution) for dimensioning the single supported excavation pit regarding stress analysis of the wall is investigated. Therefore, the embedment depth and the position of the strut are varied for five different sheet pile walls and three different strut profiles. The results demonstrate that both algorithms perform well, particularly with a higher number of calculation steps. After varying iteration steps and population size, the Differential Evolution approach shows better performance compared to Particle Swarm Optimisation by means of finding the optimal solution after a lower number of computational steps.","PeriodicalId":48246,"journal":{"name":"Geotechnical and Geological Engineering","volume":"89 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Optimisation of Excavation Pit Design Using Finite Element Analyses\",\"authors\":\"Hauke Jürgens, Sascha Henke\",\"doi\":\"10.1007/s10706-023-02639-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The present study focusses on optimising a single supported excavation pit to achieve a more economical design using finite element analyses. Two methods for automating the derivation of the excavation pit’s necessary embedment depth are presented, which involve either embedment depth reduction using additional calculation phases or adapting the entire model with renewed discretisation. The bending moments as well as the earth pressure distribution along the wall show good agreement, indicating that both methods are suitable for application. Subsequently, the feasibility of using optimisation algorithms (Particle Swarm Optimisation and Differential Evolution) for dimensioning the single supported excavation pit regarding stress analysis of the wall is investigated. Therefore, the embedment depth and the position of the strut are varied for five different sheet pile walls and three different strut profiles. The results demonstrate that both algorithms perform well, particularly with a higher number of calculation steps. After varying iteration steps and population size, the Differential Evolution approach shows better performance compared to Particle Swarm Optimisation by means of finding the optimal solution after a lower number of computational steps.\",\"PeriodicalId\":48246,\"journal\":{\"name\":\"Geotechnical and Geological Engineering\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotechnical and Geological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10706-023-02639-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotechnical and Geological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10706-023-02639-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要:目前的研究重点是优化单一支护基坑,以实现更经济的设计使用有限元分析。提出了两种自动推导基坑必要埋深的方法,即利用附加的计算阶段来减小埋深,或者用新的离散化方法来适应整个模型。计算得到的弯矩和沿墙土压力分布具有较好的一致性,表明两种方法都是适用的。随后,研究了利用优化算法(粒子群算法和差分进化算法)对单支开挖基坑进行围岩应力分析的可行性。因此,对于5种不同板桩墙体和3种不同板桩截面,支杆的嵌入深度和位置是不同的。结果表明,两种算法都具有良好的性能,特别是在计算步骤较多的情况下。在不同的迭代步长和种群大小后,差分进化方法比粒子群算法表现出更好的性能,因为它可以在更少的计算步数后找到最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Optimisation of Excavation Pit Design Using Finite Element Analyses
Abstract The present study focusses on optimising a single supported excavation pit to achieve a more economical design using finite element analyses. Two methods for automating the derivation of the excavation pit’s necessary embedment depth are presented, which involve either embedment depth reduction using additional calculation phases or adapting the entire model with renewed discretisation. The bending moments as well as the earth pressure distribution along the wall show good agreement, indicating that both methods are suitable for application. Subsequently, the feasibility of using optimisation algorithms (Particle Swarm Optimisation and Differential Evolution) for dimensioning the single supported excavation pit regarding stress analysis of the wall is investigated. Therefore, the embedment depth and the position of the strut are varied for five different sheet pile walls and three different strut profiles. The results demonstrate that both algorithms perform well, particularly with a higher number of calculation steps. After varying iteration steps and population size, the Differential Evolution approach shows better performance compared to Particle Swarm Optimisation by means of finding the optimal solution after a lower number of computational steps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotechnical and Geological Engineering
Geotechnical and Geological Engineering ENGINEERING, GEOLOGICAL-
CiteScore
3.70
自引率
5.90%
发文量
298
期刊介绍: Geotechnical and Geological Engineering publishes papers in the areas of soil and rock engineering and also of geology as applied in the civil engineering, mining and petroleum industries. The emphasis is on the engineering aspects of soil and rock mechanics, geology and hydrogeology, although papers on theoretical and experimental advances in ground mechanics are also welcomed for inclusion. The journal encompasses a broad spectrum of geo-engineering although several areas have been identified which will be given particular priority: Soil and rock engineering; Foundation engineering; Applied geology for design and construction; Geo-environmental engineering; Earthquake engineering and dynamic behavior of soils and rocks; Geohazards and mitigation; Mining engineering; Geotechnical aspects of petroleum engineering; Information technology applications in geo-engineering; Novel geotechnical construction techniques; Case histories describing important geo-engineering projects. Geotechnical and Geological Engineering publishes contributions in the form of original and review papers, or as short technical notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信