应变玻璃诱导Ti-Zr-Ni-Cu合金从相变塑性到可逆超弹性的转换

IF 8.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chao Song, Shuai Ren, Shaohui Li, Shengwei Li, Guijun Liu, Zhihua Nie, Yandong Wang, Daoyong Cong
{"title":"应变玻璃诱导Ti-Zr-Ni-Cu合金从相变塑性到可逆超弹性的转换","authors":"Chao Song, Shuai Ren, Shaohui Li, Shengwei Li, Guijun Liu, Zhihua Nie, Yandong Wang, Daoyong Cong","doi":"10.1080/21663831.2023.2258937","DOIUrl":null,"url":null,"abstract":"Reversibility of phase transformation, a basic requirement for functional properties of shape memory alloys, such as superelasticity, is severely affected by plastic deformation. Here, strain glass has been utilized to improve the reversibility of phase transformation. The incorporation of Al into Ti-Zr-Ni-Cu induces strain glass and endows the alloy with reversible phase transformation and thus ideal superelasticity. In situ x-ray diffraction and dynamic mechanical experiments were utilized to verify the mechanism for the conversion from transformation plasticity to superelasticity. This work provides a new way to improve the reversibility of phase transformation and expands the practical implications of strain glass.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"8 1","pages":"0"},"PeriodicalIF":8.6000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain glass-induced switch from transformation plasticity to reversible superelasticity in Ti-Zr-Ni-Cu alloys\",\"authors\":\"Chao Song, Shuai Ren, Shaohui Li, Shengwei Li, Guijun Liu, Zhihua Nie, Yandong Wang, Daoyong Cong\",\"doi\":\"10.1080/21663831.2023.2258937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reversibility of phase transformation, a basic requirement for functional properties of shape memory alloys, such as superelasticity, is severely affected by plastic deformation. Here, strain glass has been utilized to improve the reversibility of phase transformation. The incorporation of Al into Ti-Zr-Ni-Cu induces strain glass and endows the alloy with reversible phase transformation and thus ideal superelasticity. In situ x-ray diffraction and dynamic mechanical experiments were utilized to verify the mechanism for the conversion from transformation plasticity to superelasticity. This work provides a new way to improve the reversibility of phase transformation and expands the practical implications of strain glass.\",\"PeriodicalId\":18291,\"journal\":{\"name\":\"Materials Research Letters\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21663831.2023.2258937\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21663831.2023.2258937","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

相变的可逆性是形状记忆合金超弹性等功能性能的基本要求,塑性变形严重影响相变的可逆性。在这里,应变玻璃被用来提高相变的可逆性。Al在Ti-Zr-Ni-Cu中的掺入引起应变玻璃,使合金具有可逆相变,从而具有理想的超弹性。利用原位x射线衍射和动态力学实验验证了相变塑性向超弹性转变的机理。本工作为提高相变可逆性提供了一条新的途径,拓展了应变玻璃的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strain glass-induced switch from transformation plasticity to reversible superelasticity in Ti-Zr-Ni-Cu alloys
Reversibility of phase transformation, a basic requirement for functional properties of shape memory alloys, such as superelasticity, is severely affected by plastic deformation. Here, strain glass has been utilized to improve the reversibility of phase transformation. The incorporation of Al into Ti-Zr-Ni-Cu induces strain glass and endows the alloy with reversible phase transformation and thus ideal superelasticity. In situ x-ray diffraction and dynamic mechanical experiments were utilized to verify the mechanism for the conversion from transformation plasticity to superelasticity. This work provides a new way to improve the reversibility of phase transformation and expands the practical implications of strain glass.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Letters
Materials Research Letters Materials Science-General Materials Science
CiteScore
12.10
自引率
3.60%
发文量
98
审稿时长
3.3 months
期刊介绍: Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信