{"title":"基于大涡模拟方法的内燃机湍流结构数值模拟","authors":"Negin Aghamohamadi, Hassan Khaleghi, Majid Razaghi","doi":"10.4271/03-17-02-0011","DOIUrl":null,"url":null,"abstract":"<div>Using two subgrid-scale models of Smagorinsky and its dynamic version, large eddy simulation (LES) approach is applied to develop a 3D computer code simulating the in-cylinder flow during intake and compression strokes in an engine geometry consisting of a pancake-shaped piston with a fixed valve. The results are compared with corresponding experimental data and a standard K-Ɛ turbulence model. LES results generally show better agreement with available experimental data suggesting that LES with dynamic subgrid-scale model is more effective method for accurately predicting the in-cylinder flow field. Representative Fiat engine equipped with moving valve and piston bowl is analyzed as the second case to assess the capability of the method to handle complex geometries and impacts of geometrical parameters such as shape and position of piston bowl together with swirling intake flow pattern on both turbulent structure of in-cylinder flow and engine performance using dynamic version of LES approach over a curvilinear computational meshed geometry. Results indicate that presence of piston bowl leads to eye-catching increment in both turbulent kinematic energy and tumble ratio amounts at the end of compression stroke by around 29% and 33%, respectively. The optimum swirl ratio found to be 4, leading to 67.9% increment in pre-injection turbulent kinetic energy in comparison with non-swirl pattern, whereas 20% eccentricity of cylinder bowl just led to 2% improvement in the pre-injection turbulent kinetic energy, which is not recommended due to small impact compared to noticeable manufacturing expenditures.</div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of Turbulent Structures Inside Internal Combustion Engines Using Large Eddy Simulation Method\",\"authors\":\"Negin Aghamohamadi, Hassan Khaleghi, Majid Razaghi\",\"doi\":\"10.4271/03-17-02-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>Using two subgrid-scale models of Smagorinsky and its dynamic version, large eddy simulation (LES) approach is applied to develop a 3D computer code simulating the in-cylinder flow during intake and compression strokes in an engine geometry consisting of a pancake-shaped piston with a fixed valve. The results are compared with corresponding experimental data and a standard K-Ɛ turbulence model. LES results generally show better agreement with available experimental data suggesting that LES with dynamic subgrid-scale model is more effective method for accurately predicting the in-cylinder flow field. Representative Fiat engine equipped with moving valve and piston bowl is analyzed as the second case to assess the capability of the method to handle complex geometries and impacts of geometrical parameters such as shape and position of piston bowl together with swirling intake flow pattern on both turbulent structure of in-cylinder flow and engine performance using dynamic version of LES approach over a curvilinear computational meshed geometry. Results indicate that presence of piston bowl leads to eye-catching increment in both turbulent kinematic energy and tumble ratio amounts at the end of compression stroke by around 29% and 33%, respectively. The optimum swirl ratio found to be 4, leading to 67.9% increment in pre-injection turbulent kinetic energy in comparison with non-swirl pattern, whereas 20% eccentricity of cylinder bowl just led to 2% improvement in the pre-injection turbulent kinetic energy, which is not recommended due to small impact compared to noticeable manufacturing expenditures.</div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/03-17-02-0011\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/03-17-02-0011","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical Simulation of Turbulent Structures Inside Internal Combustion Engines Using Large Eddy Simulation Method
Using two subgrid-scale models of Smagorinsky and its dynamic version, large eddy simulation (LES) approach is applied to develop a 3D computer code simulating the in-cylinder flow during intake and compression strokes in an engine geometry consisting of a pancake-shaped piston with a fixed valve. The results are compared with corresponding experimental data and a standard K-Ɛ turbulence model. LES results generally show better agreement with available experimental data suggesting that LES with dynamic subgrid-scale model is more effective method for accurately predicting the in-cylinder flow field. Representative Fiat engine equipped with moving valve and piston bowl is analyzed as the second case to assess the capability of the method to handle complex geometries and impacts of geometrical parameters such as shape and position of piston bowl together with swirling intake flow pattern on both turbulent structure of in-cylinder flow and engine performance using dynamic version of LES approach over a curvilinear computational meshed geometry. Results indicate that presence of piston bowl leads to eye-catching increment in both turbulent kinematic energy and tumble ratio amounts at the end of compression stroke by around 29% and 33%, respectively. The optimum swirl ratio found to be 4, leading to 67.9% increment in pre-injection turbulent kinetic energy in comparison with non-swirl pattern, whereas 20% eccentricity of cylinder bowl just led to 2% improvement in the pre-injection turbulent kinetic energy, which is not recommended due to small impact compared to noticeable manufacturing expenditures.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.