基于脑电图信号传递熵的有效连通性右/左手运动图像分类

IF 1 Q4 NEUROSCIENCES
Erfan Rezaei, Ahmad Shalbaf
{"title":"基于脑电图信号传递熵的有效连通性右/左手运动图像分类","authors":"Erfan Rezaei, Ahmad Shalbaf","doi":"10.32598/bcn.2021.2034.3","DOIUrl":null,"url":null,"abstract":"Introduction: The right and left-hand motor imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchical feature selection and classification for discrimination of right and lefthand MI tasks. Methods: TE is calculated among EEG channels as the distinctive, effective connectivity features. TE is a model-free method that can measure nonlinear effective connectivity and analyze multivariate dependent directed information flow among neural EEG channels. Then four feature subset selection methods namely relief-F, Fisher, Laplacian, and local learningbased clustering (LLCFS) algorithms are used to choose the most significant effective connectivity features and reduce redundant information. Finally, support vector machine (SVM) and linear discriminant analysis (LDA) methods are used for classification. Results: Results show that the best performance in 29 healthy subjects and 60 trials is achieved using the TE method via the Relief-F algorithm as feature selection and support vector machine (SVM) classification with 91.02% accuracy. Conclusion: The TE index and a hierarchical feature selection and classification can be useful for the discrimination of right- and left-hand MI tasks from multichannel EEG signals.","PeriodicalId":8701,"journal":{"name":"Basic and Clinical Neuroscience","volume":"760 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in Electroencephalogram Signal\",\"authors\":\"Erfan Rezaei, Ahmad Shalbaf\",\"doi\":\"10.32598/bcn.2021.2034.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: The right and left-hand motor imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchical feature selection and classification for discrimination of right and lefthand MI tasks. Methods: TE is calculated among EEG channels as the distinctive, effective connectivity features. TE is a model-free method that can measure nonlinear effective connectivity and analyze multivariate dependent directed information flow among neural EEG channels. Then four feature subset selection methods namely relief-F, Fisher, Laplacian, and local learningbased clustering (LLCFS) algorithms are used to choose the most significant effective connectivity features and reduce redundant information. Finally, support vector machine (SVM) and linear discriminant analysis (LDA) methods are used for classification. Results: Results show that the best performance in 29 healthy subjects and 60 trials is achieved using the TE method via the Relief-F algorithm as feature selection and support vector machine (SVM) classification with 91.02% accuracy. Conclusion: The TE index and a hierarchical feature selection and classification can be useful for the discrimination of right- and left-hand MI tasks from multichannel EEG signals.\",\"PeriodicalId\":8701,\"journal\":{\"name\":\"Basic and Clinical Neuroscience\",\"volume\":\"760 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic and Clinical Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32598/bcn.2021.2034.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and Clinical Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32598/bcn.2021.2034.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于脑电图(EEG)信号的左右运动图像(MI)分析可以直接将中枢神经系统与计算机或设备连接起来。本研究旨在识别一组由传递熵(TE)量化的鲁棒非线性有效脑连通性特征,以表征脑电信号中脑区之间的关系,并创建一种分层特征选择和分类方法,用于判别右手和左手MI任务。方法:计算脑电信号通道间的TE值,作为有效的连接特征。TE是一种无模型的方法,可以测量非线性有效连通性,分析神经脑电通道之间的多变量相关定向信息流。然后采用relief-F、Fisher、Laplacian和基于局部学习的聚类(LLCFS)算法四种特征子集选择方法选择最显著的有效连通性特征,减少冗余信息。最后,采用支持向量机(SVM)和线性判别分析(LDA)方法进行分类。结果:采用Relief-F算法作为特征选择和支持向量机(SVM)分类的TE方法在29名健康受试者和60个试验中取得了最佳效果,准确率为91.02%。结论:TE指数和分层特征选择与分类可用于从多通道脑电信号中区分左右脑梗死任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in Electroencephalogram Signal
Introduction: The right and left-hand motor imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchical feature selection and classification for discrimination of right and lefthand MI tasks. Methods: TE is calculated among EEG channels as the distinctive, effective connectivity features. TE is a model-free method that can measure nonlinear effective connectivity and analyze multivariate dependent directed information flow among neural EEG channels. Then four feature subset selection methods namely relief-F, Fisher, Laplacian, and local learningbased clustering (LLCFS) algorithms are used to choose the most significant effective connectivity features and reduce redundant information. Finally, support vector machine (SVM) and linear discriminant analysis (LDA) methods are used for classification. Results: Results show that the best performance in 29 healthy subjects and 60 trials is achieved using the TE method via the Relief-F algorithm as feature selection and support vector machine (SVM) classification with 91.02% accuracy. Conclusion: The TE index and a hierarchical feature selection and classification can be useful for the discrimination of right- and left-hand MI tasks from multichannel EEG signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
64
审稿时长
4 weeks
期刊介绍: BCN is an international multidisciplinary journal that publishes editorials, original full-length research articles, short communications, reviews, methodological papers, commentaries, perspectives and “news and reports” in the broad fields of developmental, molecular, cellular, system, computational, behavioral, cognitive, and clinical neuroscience. No area in the neural related sciences is excluded from consideration, although priority is given to studies that provide applied insights into the functioning of the nervous system. BCN aims to advance our understanding of organization and function of the nervous system in health and disease, thereby improving the diagnosis and treatment of neural-related disorders. Manuscripts submitted to BCN should describe novel results generated by experiments that were guided by clearly defined aims or hypotheses. BCN aims to provide serious ties in interdisciplinary communication, accessibility to a broad readership inside Iran and the region and also in all other international academic sites, effective peer review process, and independence from all possible non-scientific interests. BCN also tries to empower national, regional and international collaborative networks in the field of neuroscience in Iran, Middle East, Central Asia and North Africa and to be the voice of the Iranian and regional neuroscience community in the world of neuroscientists. In this way, the journal encourages submission of editorials, review papers, commentaries, methodological notes and perspectives that address this scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信