可重构智能地面辅助室内雷达监测:可行性研究

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Marco Mercuri;Emilio Arnieri;Raffaele De Marco;Pierangelo Veltri;Felice Crupi;Luigi Boccia
{"title":"可重构智能地面辅助室内雷达监测:可行性研究","authors":"Marco Mercuri;Emilio Arnieri;Raffaele De Marco;Pierangelo Veltri;Felice Crupi;Luigi Boccia","doi":"10.1109/JERM.2023.3298730","DOIUrl":null,"url":null,"abstract":"The application of radar technology in indoor people monitoring has opened up new avenues, such as localization and tracking, vital signs monitoring, and fall detection. Nevertheless, one of the significant challenges facing radar systems is the issue of indoor multipath propagation, which results in radar ghosts that can diminish the detection accuracy or even compromise the monitoring process entirely. This study delves into the utilization of reconfigurable intelligent surfaces (RISs) in radar-based indoor people localization. Thanks to the use of RIS, targets can be tracked from multiple orientations, achieving a more precise estimation of the propagation channel and in turn mitigating the effects of indoor multipath propagation. As a result, the detection performance of the radar system can be improved without increasing the radar's complexity. Empirical evidence gathered from experiments conducted in a laboratory environment has demonstrated the feasibility of the proposed approach in accurately locating multiple subjects in a two-dimensional (2-D) space while being able to reject radar ghosts. Practical implications of this novel approach include the development of smart building systems, Internet of Things (IoT), telemedicine, Hospital 4.0, automated nurse call solutions, ambient assisted living, firefighter tracking, and security applications.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"7 4","pages":"354-364"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfigurable Intelligent Surface-Aided Indoor Radar Monitoring: A Feasibility Study\",\"authors\":\"Marco Mercuri;Emilio Arnieri;Raffaele De Marco;Pierangelo Veltri;Felice Crupi;Luigi Boccia\",\"doi\":\"10.1109/JERM.2023.3298730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of radar technology in indoor people monitoring has opened up new avenues, such as localization and tracking, vital signs monitoring, and fall detection. Nevertheless, one of the significant challenges facing radar systems is the issue of indoor multipath propagation, which results in radar ghosts that can diminish the detection accuracy or even compromise the monitoring process entirely. This study delves into the utilization of reconfigurable intelligent surfaces (RISs) in radar-based indoor people localization. Thanks to the use of RIS, targets can be tracked from multiple orientations, achieving a more precise estimation of the propagation channel and in turn mitigating the effects of indoor multipath propagation. As a result, the detection performance of the radar system can be improved without increasing the radar's complexity. Empirical evidence gathered from experiments conducted in a laboratory environment has demonstrated the feasibility of the proposed approach in accurately locating multiple subjects in a two-dimensional (2-D) space while being able to reject radar ghosts. Practical implications of this novel approach include the development of smart building systems, Internet of Things (IoT), telemedicine, Hospital 4.0, automated nurse call solutions, ambient assisted living, firefighter tracking, and security applications.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":\"7 4\",\"pages\":\"354-364\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10216298/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10216298/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

雷达技术在室内人员监测中的应用开辟了定位与跟踪、生命体征监测、跌倒检测等新途径。然而,雷达系统面临的一个重大挑战是室内多径传播问题,它会导致雷达鬼影,从而降低探测精度,甚至完全危及监测过程。本研究探讨了可重构智能表面(RISs)在基于雷达的室内人物定位中的应用。由于RIS的使用,可以从多个方向跟踪目标,实现对传播信道的更精确估计,从而减轻室内多径传播的影响。在不增加雷达复杂性的前提下,提高了雷达系统的探测性能。在实验室环境中进行的实验中收集的经验证据表明,所提出的方法在二维(2-D)空间中准确定位多个受试者的可行性,同时能够拒绝雷达幽灵。这种新方法的实际意义包括智能建筑系统、物联网(IoT)、远程医疗、医院4.0、自动护士呼叫解决方案、环境辅助生活、消防员跟踪和安全应用的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconfigurable Intelligent Surface-Aided Indoor Radar Monitoring: A Feasibility Study
The application of radar technology in indoor people monitoring has opened up new avenues, such as localization and tracking, vital signs monitoring, and fall detection. Nevertheless, one of the significant challenges facing radar systems is the issue of indoor multipath propagation, which results in radar ghosts that can diminish the detection accuracy or even compromise the monitoring process entirely. This study delves into the utilization of reconfigurable intelligent surfaces (RISs) in radar-based indoor people localization. Thanks to the use of RIS, targets can be tracked from multiple orientations, achieving a more precise estimation of the propagation channel and in turn mitigating the effects of indoor multipath propagation. As a result, the detection performance of the radar system can be improved without increasing the radar's complexity. Empirical evidence gathered from experiments conducted in a laboratory environment has demonstrated the feasibility of the proposed approach in accurately locating multiple subjects in a two-dimensional (2-D) space while being able to reject radar ghosts. Practical implications of this novel approach include the development of smart building systems, Internet of Things (IoT), telemedicine, Hospital 4.0, automated nurse call solutions, ambient assisted living, firefighter tracking, and security applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信