Ni(II)改性丙胺二氧化硅-二氧化钛杂化材料催化苯甲醇转化为苯甲醛

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
Dewi Agustiningsih, Nuryono Nuryono, Sri Juari Santosa, Eko Sri Kunarti
{"title":"Ni(II)改性丙胺二氧化硅-二氧化钛杂化材料催化苯甲醇转化为苯甲醛","authors":"Dewi Agustiningsih, Nuryono Nuryono, Sri Juari Santosa, Eko Sri Kunarti","doi":"10.22146/ijc.84282","DOIUrl":null,"url":null,"abstract":"SiO2-TiO2@propylamine-Ni(II) as the catalyst for the benzyl alcohol oxidation has been synthesized by utilizing rice husk ash as the SiO2 source. This research was started by extracting SiO2 from rice husk ash and continued by synthesizing the SiO2-TiO2 composite using titanium(IV) tetraisopropoxide (TTIP) as TiO2 precursor and PEG-40 as template. The composite functionalization and metal modification were carried out by adding (3-aminopropyl)triethoxysilane (APTES) as the source of propylamine linker and impregnating NiCl2·6H2O as the nickel precursor, respectively. The catalysts were synthesized by varying the ratios between each component within the material. The prepared materials were then characterized using ATR-IR, XRD, XRF, PSA, SAA, AAS, SEM-EDX, HR-TEM, and TGA. The catalyst activity was investigated by applying it to the oxidation reaction of benzyl alcohol to benzaldehyde with H2O2 as the oxidizing agent under sonication system. The obtained products were then analyzed by using GC-MS to quantify the success of the reaction. All characterizations performed in this research generally indicate the success in the synthesis of SiO2-TiO2@propylamine-Ni(II) materials. Under the same condition including at room temperature, 1 h reaction time, and sonication system, the optimal oxidation reaction of benzyl alcohol was reached when SiO2-TiO2@propylamine-Ni(II)5 was used as the catalyst in 98.52% yield.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":"10 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propylamine Silica-Titania Hybrid Material Modified with Ni(II) as the Catalyst for Benzyl Alcohol to Benzaldehyde Conversion\",\"authors\":\"Dewi Agustiningsih, Nuryono Nuryono, Sri Juari Santosa, Eko Sri Kunarti\",\"doi\":\"10.22146/ijc.84282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SiO2-TiO2@propylamine-Ni(II) as the catalyst for the benzyl alcohol oxidation has been synthesized by utilizing rice husk ash as the SiO2 source. This research was started by extracting SiO2 from rice husk ash and continued by synthesizing the SiO2-TiO2 composite using titanium(IV) tetraisopropoxide (TTIP) as TiO2 precursor and PEG-40 as template. The composite functionalization and metal modification were carried out by adding (3-aminopropyl)triethoxysilane (APTES) as the source of propylamine linker and impregnating NiCl2·6H2O as the nickel precursor, respectively. The catalysts were synthesized by varying the ratios between each component within the material. The prepared materials were then characterized using ATR-IR, XRD, XRF, PSA, SAA, AAS, SEM-EDX, HR-TEM, and TGA. The catalyst activity was investigated by applying it to the oxidation reaction of benzyl alcohol to benzaldehyde with H2O2 as the oxidizing agent under sonication system. The obtained products were then analyzed by using GC-MS to quantify the success of the reaction. All characterizations performed in this research generally indicate the success in the synthesis of SiO2-TiO2@propylamine-Ni(II) materials. Under the same condition including at room temperature, 1 h reaction time, and sonication system, the optimal oxidation reaction of benzyl alcohol was reached when SiO2-TiO2@propylamine-Ni(II)5 was used as the catalyst in 98.52% yield.\",\"PeriodicalId\":13515,\"journal\":{\"name\":\"Indonesian Journal of Chemistry\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijc.84282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.84282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以稻壳灰为SiO2源,合成了SiO2-TiO2@propylamine-Ni(II)作为苯甲醇氧化催化剂。本研究首先从稻壳灰中提取SiO2,然后以钛(IV)四异丙醇(TTIP)为TiO2前驱体,PEG-40为模板合成SiO2-TiO2复合材料。分别以(3-氨基丙基)三乙氧基硅烷(APTES)为丙胺连接剂源,以NiCl2·6H2O浸渍为镍前驱体进行复合功能化和金属改性。通过改变材料中各组分之间的比例来合成催化剂。然后用ATR-IR、XRD、XRF、PSA、SAA、AAS、SEM-EDX、HR-TEM和TGA对制备的材料进行表征。将其应用于超声波系统下以H2O2为氧化剂的苯甲醇氧化制苯甲醛反应中,考察了催化剂的活性。然后用GC-MS分析得到的产物来量化反应的成功。本研究中进行的所有表征都表明SiO2-TiO2@propylamine-Ni(II)材料的合成取得了成功。在室温、反应时间为1 h、超声系统条件相同的条件下,以SiO2-TiO2@propylamine-Ni(II)5为催化剂,收率为98.52%时,苯甲醇的最佳氧化反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Propylamine Silica-Titania Hybrid Material Modified with Ni(II) as the Catalyst for Benzyl Alcohol to Benzaldehyde Conversion
SiO2-TiO2@propylamine-Ni(II) as the catalyst for the benzyl alcohol oxidation has been synthesized by utilizing rice husk ash as the SiO2 source. This research was started by extracting SiO2 from rice husk ash and continued by synthesizing the SiO2-TiO2 composite using titanium(IV) tetraisopropoxide (TTIP) as TiO2 precursor and PEG-40 as template. The composite functionalization and metal modification were carried out by adding (3-aminopropyl)triethoxysilane (APTES) as the source of propylamine linker and impregnating NiCl2·6H2O as the nickel precursor, respectively. The catalysts were synthesized by varying the ratios between each component within the material. The prepared materials were then characterized using ATR-IR, XRD, XRF, PSA, SAA, AAS, SEM-EDX, HR-TEM, and TGA. The catalyst activity was investigated by applying it to the oxidation reaction of benzyl alcohol to benzaldehyde with H2O2 as the oxidizing agent under sonication system. The obtained products were then analyzed by using GC-MS to quantify the success of the reaction. All characterizations performed in this research generally indicate the success in the synthesis of SiO2-TiO2@propylamine-Ni(II) materials. Under the same condition including at room temperature, 1 h reaction time, and sonication system, the optimal oxidation reaction of benzyl alcohol was reached when SiO2-TiO2@propylamine-Ni(II)5 was used as the catalyst in 98.52% yield.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indonesian Journal of Chemistry
Indonesian Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
106
审稿时长
15 weeks
期刊介绍: Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信