锂离子电池负极高速激光干燥:挑战与机遇

IF 2.6 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Samuel Fink, Delil Demir, Markus Börner, Vinzenz Göken, Christian Vedder
{"title":"锂离子电池负极高速激光干燥:挑战与机遇","authors":"Samuel Fink, Delil Demir, Markus Börner, Vinzenz Göken, Christian Vedder","doi":"10.3390/wevj14090255","DOIUrl":null,"url":null,"abstract":"In modern electrode manufacturing for lithium-ion batteries, the drying of the electrode pastes consumes a considerable amount of space and energy. To increase the efficiency of the drying process and reduce the footprint of the drying equipment, a laser-based drying process is investigated. Evaporation rates of up to 318 g m−2 s−1 can be measured, which is orders of magnitude higher than the evaporation rates in conventional furnace drying processes. Optical measurements of the slurry components in the visible and near-infrared spectrum are conducted. Thermal analyses the of laser-dried samples reveal that the commonly used binders carboxymethyl-cellulose (CMC) and styrene–butadiene rubber (SBR) are not affected by the laser drying process within the investigated process window. The results indicated that with the combination of a fast laser drying step and a subsequent convection drying step, high evaporation rates can be achieved while maintaining the integrity and adhesion of the anode.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":"30 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-Speed Laser Drying of Lithium-Ion Battery Anodes: Challenges and Opportunities\",\"authors\":\"Samuel Fink, Delil Demir, Markus Börner, Vinzenz Göken, Christian Vedder\",\"doi\":\"10.3390/wevj14090255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern electrode manufacturing for lithium-ion batteries, the drying of the electrode pastes consumes a considerable amount of space and energy. To increase the efficiency of the drying process and reduce the footprint of the drying equipment, a laser-based drying process is investigated. Evaporation rates of up to 318 g m−2 s−1 can be measured, which is orders of magnitude higher than the evaporation rates in conventional furnace drying processes. Optical measurements of the slurry components in the visible and near-infrared spectrum are conducted. Thermal analyses the of laser-dried samples reveal that the commonly used binders carboxymethyl-cellulose (CMC) and styrene–butadiene rubber (SBR) are not affected by the laser drying process within the investigated process window. The results indicated that with the combination of a fast laser drying step and a subsequent convection drying step, high evaporation rates can be achieved while maintaining the integrity and adhesion of the anode.\",\"PeriodicalId\":38979,\"journal\":{\"name\":\"World Electric Vehicle Journal\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Electric Vehicle Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/wevj14090255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj14090255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

在现代锂离子电池电极制造中,电极浆料的干燥需要消耗大量的空间和能源。为了提高干燥过程的效率,减少干燥设备的占地面积,研究了一种基于激光的干燥工艺。蒸发速率可达318 g m−2 s−1,这是数量级高于传统炉干燥过程中的蒸发速率。对浆料成分进行了可见光和近红外光谱的光学测量。对激光干燥样品的热分析表明,在所研究的工艺窗口内,常用的粘结剂羧甲基纤维素(CMC)和丁苯橡胶(SBR)不受激光干燥过程的影响。结果表明,采用快速激光干燥和后续对流干燥相结合的方法,可以在保持阳极完整性和附着性的前提下获得较高的蒸发速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Speed Laser Drying of Lithium-Ion Battery Anodes: Challenges and Opportunities
In modern electrode manufacturing for lithium-ion batteries, the drying of the electrode pastes consumes a considerable amount of space and energy. To increase the efficiency of the drying process and reduce the footprint of the drying equipment, a laser-based drying process is investigated. Evaporation rates of up to 318 g m−2 s−1 can be measured, which is orders of magnitude higher than the evaporation rates in conventional furnace drying processes. Optical measurements of the slurry components in the visible and near-infrared spectrum are conducted. Thermal analyses the of laser-dried samples reveal that the commonly used binders carboxymethyl-cellulose (CMC) and styrene–butadiene rubber (SBR) are not affected by the laser drying process within the investigated process window. The results indicated that with the combination of a fast laser drying step and a subsequent convection drying step, high evaporation rates can be achieved while maintaining the integrity and adhesion of the anode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Electric Vehicle Journal
World Electric Vehicle Journal Engineering-Automotive Engineering
CiteScore
4.50
自引率
8.70%
发文量
196
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信