{"title":"通过减少大型项目的内含碳排放量实现环境可持续建设:关于高层建筑场外做法的研究","authors":"Zaid Khalaf Raqqad","doi":"10.1007/s44150-023-00099-4","DOIUrl":null,"url":null,"abstract":"<div><p>This research paper aims to investigate the environmental sustainability of high-rise buildings through off-site construction practices. The paper begins with a literature review of climate change, carbon emissions, and construction practices, followed by a detailed analysis of off-site construction and its potential to reduce embodied carbon emissions. The research methodology involves case studies of both experimental and real on-site investigated projects and academic research studies, and a survey questionnaire. The case studies are examined intensively in terms of environmental sustainability, with a focus on embodied carbon emissions. The same as for the quantitative survey. The findings of this research paper will contribute to the development of sustainable construction practices and provide solutions for sustainable construction projects. The research motivation is established by the projected global population increase to 9 billion by 2050, coupled with climate change goals, which emphasized the need to address environmental sustainability and energy efficiency in construction. The construction industry is recognized as a significant contributor to greenhouse gas emissions and their consequences. The research aims to address knowledge gaps in the field of sustainable construction. These gaps include a lack of standardized measurements and calculations for embodied carbon in construction projects, particularly in comparison to operational carbon. Uncertainties related to transportation and storage, especially in off-site methods, have not been thoroughly explored, leading to increased emissions in certain areas like reinforced concrete, despite the use of prefabrication. The research seeks to narrow down and fill these gaps and uncertainties, adapting them to different project types and materials. Additionally, the overlap between the optimization process and sustainability is examined, as they are sometimes considered the same and other times in conflict. The mission of the research is to identify these knowledge gaps, explore existing solutions, and analyse the findings. The findings suggest that off-site construction can contribute to the reduction of embodied carbon emissions in the construction industry. The paper also highlights the need for a balanced approach that considers environmental, social, and economic factors in the design stage of high-rise buildings. Overall, the paper contributes to the development of sustainable construction practices and provides solutions for sustainable construction projects.</p></div>","PeriodicalId":100117,"journal":{"name":"Architecture, Structures and Construction","volume":"4 1","pages":"1 - 14"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmentally sustainable construction by mitigating embodied carbon emissions of large-scale projects: a study on off-site practices on high-rise buildings\",\"authors\":\"Zaid Khalaf Raqqad\",\"doi\":\"10.1007/s44150-023-00099-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research paper aims to investigate the environmental sustainability of high-rise buildings through off-site construction practices. The paper begins with a literature review of climate change, carbon emissions, and construction practices, followed by a detailed analysis of off-site construction and its potential to reduce embodied carbon emissions. The research methodology involves case studies of both experimental and real on-site investigated projects and academic research studies, and a survey questionnaire. The case studies are examined intensively in terms of environmental sustainability, with a focus on embodied carbon emissions. The same as for the quantitative survey. The findings of this research paper will contribute to the development of sustainable construction practices and provide solutions for sustainable construction projects. The research motivation is established by the projected global population increase to 9 billion by 2050, coupled with climate change goals, which emphasized the need to address environmental sustainability and energy efficiency in construction. The construction industry is recognized as a significant contributor to greenhouse gas emissions and their consequences. The research aims to address knowledge gaps in the field of sustainable construction. These gaps include a lack of standardized measurements and calculations for embodied carbon in construction projects, particularly in comparison to operational carbon. Uncertainties related to transportation and storage, especially in off-site methods, have not been thoroughly explored, leading to increased emissions in certain areas like reinforced concrete, despite the use of prefabrication. The research seeks to narrow down and fill these gaps and uncertainties, adapting them to different project types and materials. Additionally, the overlap between the optimization process and sustainability is examined, as they are sometimes considered the same and other times in conflict. The mission of the research is to identify these knowledge gaps, explore existing solutions, and analyse the findings. The findings suggest that off-site construction can contribute to the reduction of embodied carbon emissions in the construction industry. The paper also highlights the need for a balanced approach that considers environmental, social, and economic factors in the design stage of high-rise buildings. Overall, the paper contributes to the development of sustainable construction practices and provides solutions for sustainable construction projects.</p></div>\",\"PeriodicalId\":100117,\"journal\":{\"name\":\"Architecture, Structures and Construction\",\"volume\":\"4 1\",\"pages\":\"1 - 14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Architecture, Structures and Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44150-023-00099-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Architecture, Structures and Construction","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44150-023-00099-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Environmentally sustainable construction by mitigating embodied carbon emissions of large-scale projects: a study on off-site practices on high-rise buildings
This research paper aims to investigate the environmental sustainability of high-rise buildings through off-site construction practices. The paper begins with a literature review of climate change, carbon emissions, and construction practices, followed by a detailed analysis of off-site construction and its potential to reduce embodied carbon emissions. The research methodology involves case studies of both experimental and real on-site investigated projects and academic research studies, and a survey questionnaire. The case studies are examined intensively in terms of environmental sustainability, with a focus on embodied carbon emissions. The same as for the quantitative survey. The findings of this research paper will contribute to the development of sustainable construction practices and provide solutions for sustainable construction projects. The research motivation is established by the projected global population increase to 9 billion by 2050, coupled with climate change goals, which emphasized the need to address environmental sustainability and energy efficiency in construction. The construction industry is recognized as a significant contributor to greenhouse gas emissions and their consequences. The research aims to address knowledge gaps in the field of sustainable construction. These gaps include a lack of standardized measurements and calculations for embodied carbon in construction projects, particularly in comparison to operational carbon. Uncertainties related to transportation and storage, especially in off-site methods, have not been thoroughly explored, leading to increased emissions in certain areas like reinforced concrete, despite the use of prefabrication. The research seeks to narrow down and fill these gaps and uncertainties, adapting them to different project types and materials. Additionally, the overlap between the optimization process and sustainability is examined, as they are sometimes considered the same and other times in conflict. The mission of the research is to identify these knowledge gaps, explore existing solutions, and analyse the findings. The findings suggest that off-site construction can contribute to the reduction of embodied carbon emissions in the construction industry. The paper also highlights the need for a balanced approach that considers environmental, social, and economic factors in the design stage of high-rise buildings. Overall, the paper contributes to the development of sustainable construction practices and provides solutions for sustainable construction projects.