{"title":"5d 到 3d 压缩和离散异常","authors":"Matteo Sacchi, Orr Sela, Gabi Zafrir","doi":"10.1007/JHEP10(2023)185","DOIUrl":null,"url":null,"abstract":"<p>Much insight into the dynamics of quantum field theories can be gained by studying the relationship between field theories in different dimensions. An interesting observation is that when two theories are related by dimensional reduction on a compact surface, their ’t Hooft anomalies corresponding to continuous symmetries are also related: the anomaly polynomial of the lower-dimensional theory can be obtained by integrating that of the higher-dimensional one on the compact surface. Naturally, this relation only holds if both theories are even dimensional. This raises the question of whether similar relations can also hold for the case of anomalies in discrete symmetries, which might be true even in odd dimensions. The natural generalization to discrete symmetries is that the anomaly theories, associated with the lower and higher dimensional theories, would be related by reduction on the compact surface. We explore this idea for compactifications of 5d superconformal field theories (SCFTs) to 3d on Riemann surfaces with global-symmetry fluxes. In this context, it can be used both as a check for these compactification constructions and for discovering new anomalies in the 5d SCFTs. This opens the way to applying the same idea of dimensional reduction of the anomaly theory to more general types of compactifications.</p>","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":"2023 10","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP10(2023)185.pdf","citationCount":"0","resultStr":"{\"title\":\"5d to 3d compactifications and discrete anomalies\",\"authors\":\"Matteo Sacchi, Orr Sela, Gabi Zafrir\",\"doi\":\"10.1007/JHEP10(2023)185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Much insight into the dynamics of quantum field theories can be gained by studying the relationship between field theories in different dimensions. An interesting observation is that when two theories are related by dimensional reduction on a compact surface, their ’t Hooft anomalies corresponding to continuous symmetries are also related: the anomaly polynomial of the lower-dimensional theory can be obtained by integrating that of the higher-dimensional one on the compact surface. Naturally, this relation only holds if both theories are even dimensional. This raises the question of whether similar relations can also hold for the case of anomalies in discrete symmetries, which might be true even in odd dimensions. The natural generalization to discrete symmetries is that the anomaly theories, associated with the lower and higher dimensional theories, would be related by reduction on the compact surface. We explore this idea for compactifications of 5d superconformal field theories (SCFTs) to 3d on Riemann surfaces with global-symmetry fluxes. In this context, it can be used both as a check for these compactification constructions and for discovering new anomalies in the 5d SCFTs. This opens the way to applying the same idea of dimensional reduction of the anomaly theory to more general types of compactifications.</p>\",\"PeriodicalId\":48906,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2023 10\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP10(2023)185.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP10(2023)185\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP10(2023)185","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Much insight into the dynamics of quantum field theories can be gained by studying the relationship between field theories in different dimensions. An interesting observation is that when two theories are related by dimensional reduction on a compact surface, their ’t Hooft anomalies corresponding to continuous symmetries are also related: the anomaly polynomial of the lower-dimensional theory can be obtained by integrating that of the higher-dimensional one on the compact surface. Naturally, this relation only holds if both theories are even dimensional. This raises the question of whether similar relations can also hold for the case of anomalies in discrete symmetries, which might be true even in odd dimensions. The natural generalization to discrete symmetries is that the anomaly theories, associated with the lower and higher dimensional theories, would be related by reduction on the compact surface. We explore this idea for compactifications of 5d superconformal field theories (SCFTs) to 3d on Riemann surfaces with global-symmetry fluxes. In this context, it can be used both as a check for these compactification constructions and for discovering new anomalies in the 5d SCFTs. This opens the way to applying the same idea of dimensional reduction of the anomaly theory to more general types of compactifications.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).