5d 到 3d 压缩和离散异常

IF 5 1区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS
Matteo Sacchi, Orr Sela, Gabi Zafrir
{"title":"5d 到 3d 压缩和离散异常","authors":"Matteo Sacchi,&nbsp;Orr Sela,&nbsp;Gabi Zafrir","doi":"10.1007/JHEP10(2023)185","DOIUrl":null,"url":null,"abstract":"<p>Much insight into the dynamics of quantum field theories can be gained by studying the relationship between field theories in different dimensions. An interesting observation is that when two theories are related by dimensional reduction on a compact surface, their ’t Hooft anomalies corresponding to continuous symmetries are also related: the anomaly polynomial of the lower-dimensional theory can be obtained by integrating that of the higher-dimensional one on the compact surface. Naturally, this relation only holds if both theories are even dimensional. This raises the question of whether similar relations can also hold for the case of anomalies in discrete symmetries, which might be true even in odd dimensions. The natural generalization to discrete symmetries is that the anomaly theories, associated with the lower and higher dimensional theories, would be related by reduction on the compact surface. We explore this idea for compactifications of 5d superconformal field theories (SCFTs) to 3d on Riemann surfaces with global-symmetry fluxes. In this context, it can be used both as a check for these compactification constructions and for discovering new anomalies in the 5d SCFTs. This opens the way to applying the same idea of dimensional reduction of the anomaly theory to more general types of compactifications.</p>","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":"2023 10","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP10(2023)185.pdf","citationCount":"0","resultStr":"{\"title\":\"5d to 3d compactifications and discrete anomalies\",\"authors\":\"Matteo Sacchi,&nbsp;Orr Sela,&nbsp;Gabi Zafrir\",\"doi\":\"10.1007/JHEP10(2023)185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Much insight into the dynamics of quantum field theories can be gained by studying the relationship between field theories in different dimensions. An interesting observation is that when two theories are related by dimensional reduction on a compact surface, their ’t Hooft anomalies corresponding to continuous symmetries are also related: the anomaly polynomial of the lower-dimensional theory can be obtained by integrating that of the higher-dimensional one on the compact surface. Naturally, this relation only holds if both theories are even dimensional. This raises the question of whether similar relations can also hold for the case of anomalies in discrete symmetries, which might be true even in odd dimensions. The natural generalization to discrete symmetries is that the anomaly theories, associated with the lower and higher dimensional theories, would be related by reduction on the compact surface. We explore this idea for compactifications of 5d superconformal field theories (SCFTs) to 3d on Riemann surfaces with global-symmetry fluxes. In this context, it can be used both as a check for these compactification constructions and for discovering new anomalies in the 5d SCFTs. This opens the way to applying the same idea of dimensional reduction of the anomaly theory to more general types of compactifications.</p>\",\"PeriodicalId\":48906,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2023 10\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP10(2023)185.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP10(2023)185\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP10(2023)185","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

通过研究不同维度的场论之间的关系,我们可以对量子场论的动力学有更深入的了解。一个有趣的现象是,当两个理论在一个紧凑表面上通过降维联系在一起时,它们对应于连续对称性的't Hooft 异常也是相关的:低维理论的异常多项式可以通过在紧凑表面上积分高维理论的异常多项式而得到。当然,这种关系只有在两个理论都是偶数维时才成立。这就提出了一个问题:对于离散对称的异常情况,类似的关系是否也能成立?对离散对称性的自然概括是,与低维理论和高维理论相关的异常理论将通过在紧凑面上的还原而相互关联。我们探讨了在黎曼曲面上用全局对称通量把 5 维超形式场论(SCFT)压缩到 3 维的这一想法。在这种情况下,它既可以用来检验这些紧凑化构造,也可以用来发现 5d SCFTs 中的新异常。这就为把异常理论的降维思想应用于更一般类型的致密化开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
5d to 3d compactifications and discrete anomalies

Much insight into the dynamics of quantum field theories can be gained by studying the relationship between field theories in different dimensions. An interesting observation is that when two theories are related by dimensional reduction on a compact surface, their ’t Hooft anomalies corresponding to continuous symmetries are also related: the anomaly polynomial of the lower-dimensional theory can be obtained by integrating that of the higher-dimensional one on the compact surface. Naturally, this relation only holds if both theories are even dimensional. This raises the question of whether similar relations can also hold for the case of anomalies in discrete symmetries, which might be true even in odd dimensions. The natural generalization to discrete symmetries is that the anomaly theories, associated with the lower and higher dimensional theories, would be related by reduction on the compact surface. We explore this idea for compactifications of 5d superconformal field theories (SCFTs) to 3d on Riemann surfaces with global-symmetry fluxes. In this context, it can be used both as a check for these compactification constructions and for discovering new anomalies in the 5d SCFTs. This opens the way to applying the same idea of dimensional reduction of the anomaly theory to more general types of compactifications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
10.00
自引率
46.30%
发文量
2107
审稿时长
12 weeks
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信