JUAN ULLOA ROJAS, JOSE IGNACIO COLOMBO, JOSE WILCHES
{"title":"考虑土-罐相互作用的锚固对储液罐屈曲地震易损性的影响——以葡萄酒储罐为例","authors":"JUAN ULLOA ROJAS, JOSE IGNACIO COLOMBO, JOSE WILCHES","doi":"10.6036/10978","DOIUrl":null,"url":null,"abstract":"In the last decades, numerous liquid storage tanks have been affected by strong earthquakes, the damage observed ranges from the partial collapse to the total collapse of the storage tanks. Elephant-foot buckling is one of the most common failures observed in these structures, which can provoke their collapse and complete loss of contents. While hydrostatic and hydrodynamic loads typically impact the seismic response of tanks, the soil type on which they are built plays an important role in influencing their performance during earthquakes. However, the soil-tank interaction has not been considered in the seismic fragility analyses of continuously supported tanks. This research aims to evaluate the seismic fragility of a continuously supported wine storage tank with a particular focus on elephant-foot buckling considering the soil-tank interaction. A specific soil condition and a typical wine storage tank are evaluated utilizing pushover-based seismic analysis and the Capacity Spectrum Method (CSM). 3D nonlinear Finite Element (FE) models are developed considering the tank, foundation, and soil. Seven ground motion records compatible with the soil type are considered. The seismic fragility is estimated using the FE models and the ground motion records. Both unanchored and anchored conditions are evaluated. The obtained results show that for the considered case study, the anchored condition shows better seismic performance when compared to the unanchored condition. Keywords: liquid storage tanks, wine storage tanks, buckling, finite element models","PeriodicalId":11386,"journal":{"name":"Dyna","volume":"1 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INFLUENCE OF ANCHORING ON THE SEISMIC FRAGILITY OF BUCKLING IN LIQUID STORAGE TANKS CONSIDERING SOIL-TANK INTERACTION: A CASE STUDY FOR WINE STORAGE TANKS\",\"authors\":\"JUAN ULLOA ROJAS, JOSE IGNACIO COLOMBO, JOSE WILCHES\",\"doi\":\"10.6036/10978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decades, numerous liquid storage tanks have been affected by strong earthquakes, the damage observed ranges from the partial collapse to the total collapse of the storage tanks. Elephant-foot buckling is one of the most common failures observed in these structures, which can provoke their collapse and complete loss of contents. While hydrostatic and hydrodynamic loads typically impact the seismic response of tanks, the soil type on which they are built plays an important role in influencing their performance during earthquakes. However, the soil-tank interaction has not been considered in the seismic fragility analyses of continuously supported tanks. This research aims to evaluate the seismic fragility of a continuously supported wine storage tank with a particular focus on elephant-foot buckling considering the soil-tank interaction. A specific soil condition and a typical wine storage tank are evaluated utilizing pushover-based seismic analysis and the Capacity Spectrum Method (CSM). 3D nonlinear Finite Element (FE) models are developed considering the tank, foundation, and soil. Seven ground motion records compatible with the soil type are considered. The seismic fragility is estimated using the FE models and the ground motion records. Both unanchored and anchored conditions are evaluated. The obtained results show that for the considered case study, the anchored condition shows better seismic performance when compared to the unanchored condition. Keywords: liquid storage tanks, wine storage tanks, buckling, finite element models\",\"PeriodicalId\":11386,\"journal\":{\"name\":\"Dyna\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dyna\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6036/10978\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dyna","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6036/10978","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
INFLUENCE OF ANCHORING ON THE SEISMIC FRAGILITY OF BUCKLING IN LIQUID STORAGE TANKS CONSIDERING SOIL-TANK INTERACTION: A CASE STUDY FOR WINE STORAGE TANKS
In the last decades, numerous liquid storage tanks have been affected by strong earthquakes, the damage observed ranges from the partial collapse to the total collapse of the storage tanks. Elephant-foot buckling is one of the most common failures observed in these structures, which can provoke their collapse and complete loss of contents. While hydrostatic and hydrodynamic loads typically impact the seismic response of tanks, the soil type on which they are built plays an important role in influencing their performance during earthquakes. However, the soil-tank interaction has not been considered in the seismic fragility analyses of continuously supported tanks. This research aims to evaluate the seismic fragility of a continuously supported wine storage tank with a particular focus on elephant-foot buckling considering the soil-tank interaction. A specific soil condition and a typical wine storage tank are evaluated utilizing pushover-based seismic analysis and the Capacity Spectrum Method (CSM). 3D nonlinear Finite Element (FE) models are developed considering the tank, foundation, and soil. Seven ground motion records compatible with the soil type are considered. The seismic fragility is estimated using the FE models and the ground motion records. Both unanchored and anchored conditions are evaluated. The obtained results show that for the considered case study, the anchored condition shows better seismic performance when compared to the unanchored condition. Keywords: liquid storage tanks, wine storage tanks, buckling, finite element models
期刊介绍:
Founded in 1926, DYNA is one of the journal of general engineering most influential and prestigious in the world, as it recognizes Clarivate Analytics.
Included in Science Citation Index Expanded, its impact factor is published every year in Journal Citations Reports (JCR).
It is the Official Body for Science and Technology of the Spanish Federation of Regional Associations of Engineers (FAIIE).
Scientific journal agreed with AEIM (Spanish Association of Mechanical Engineering)
In character Scientific-technical, it is the most appropriate way for communication between Multidisciplinary Engineers and for expressing their ideas and experience.
DYNA publishes 6 issues per year: January, March, May, July, September and November.