{"title":"电子束辐照下金纳米颗粒在二氧化硅气凝胶中的聚结","authors":"Heena Sammi, Neha Sardana, Manish Mohanta, Bhagwati Sharma","doi":"10.2174/1573413719666221122123805","DOIUrl":null,"url":null,"abstract":"Background: The coalescence of Au nanoparticles embedded in the silica gel matrix was observed by E-beam irradiation in a transmission electron microscope. Methods: It was examined that interparticle spacing between nanoparticles was reduced after incorporation into the matrix and particles came close to each other. TEM studies have shown that during E-beam irradiation ~13 nm Au nanoparticles contacted with each other along with the shrinkage of the silica aerogel or as well as the removal of surfactant layer, and transformed into different shapes of particles such as dumbbell and chain-like particles as per the interparticle gap. Results: This nanoparticle-aerogel matrix has the potential for applications in sensing, nonlinear optics, and catalysis. Conclusion: This work enhances the understanding of the role of silica aerogel and E-beam irradiation in directing the coalescence of nanoparticles.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"256 ","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coalescence of Au Nanoparticles in Silica Aerogel under Electron Beam Irradiation\",\"authors\":\"Heena Sammi, Neha Sardana, Manish Mohanta, Bhagwati Sharma\",\"doi\":\"10.2174/1573413719666221122123805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The coalescence of Au nanoparticles embedded in the silica gel matrix was observed by E-beam irradiation in a transmission electron microscope. Methods: It was examined that interparticle spacing between nanoparticles was reduced after incorporation into the matrix and particles came close to each other. TEM studies have shown that during E-beam irradiation ~13 nm Au nanoparticles contacted with each other along with the shrinkage of the silica aerogel or as well as the removal of surfactant layer, and transformed into different shapes of particles such as dumbbell and chain-like particles as per the interparticle gap. Results: This nanoparticle-aerogel matrix has the potential for applications in sensing, nonlinear optics, and catalysis. Conclusion: This work enhances the understanding of the role of silica aerogel and E-beam irradiation in directing the coalescence of nanoparticles.\",\"PeriodicalId\":10827,\"journal\":{\"name\":\"Current Nanoscience\",\"volume\":\"256 \",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Nanoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1573413719666221122123805\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1573413719666221122123805","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Coalescence of Au Nanoparticles in Silica Aerogel under Electron Beam Irradiation
Background: The coalescence of Au nanoparticles embedded in the silica gel matrix was observed by E-beam irradiation in a transmission electron microscope. Methods: It was examined that interparticle spacing between nanoparticles was reduced after incorporation into the matrix and particles came close to each other. TEM studies have shown that during E-beam irradiation ~13 nm Au nanoparticles contacted with each other along with the shrinkage of the silica aerogel or as well as the removal of surfactant layer, and transformed into different shapes of particles such as dumbbell and chain-like particles as per the interparticle gap. Results: This nanoparticle-aerogel matrix has the potential for applications in sensing, nonlinear optics, and catalysis. Conclusion: This work enhances the understanding of the role of silica aerogel and E-beam irradiation in directing the coalescence of nanoparticles.
期刊介绍:
Current Nanoscience publishes (a) Authoritative/Mini Reviews, and (b) Original Research and Highlights written by experts covering the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano-structures, nano-bubbles, nano-droplets and nanofluids. Applications of nanoscience in physics, material science, chemistry, synthesis, environmental science, electronics, biomedical nanotechnology, biomedical engineering, biotechnology, medicine and pharmaceuticals are also covered. The journal is essential to all researches involved in nanoscience and its applied and fundamental areas of science, chemistry, physics, material science, engineering and medicine.
Current Nanoscience also welcomes submissions on the following topics of Nanoscience and Nanotechnology:
Nanoelectronics and photonics
Advanced Nanomaterials
Nanofabrication and measurement
Nanobiotechnology and nanomedicine
Nanotechnology for energy
Sensors and actuator
Computational nanoscience and technology.