{"title":"喷管直径和孔数对汽油直喷发动机性能和排放的影响","authors":"Omar YOUSEF, Mahmoud MASHKOUR","doi":"10.5541/ijot.1272871","DOIUrl":null,"url":null,"abstract":"The goal of the current study is to estimate how a gasoline direct injection (GDI) engine's performance and emissions are affected by the fuel injector nozzle diameter and hole number of its injectors. A thermodynamic mathematical modelling has been created utilizing a software program written in the MATLAB language to simulate the two-zone combustion process of a four-stroke direct injection engine running on gasoline at (Rotation Engine Speed 3000 revolution per minute (rpm), 40 MPa injection pressure, compression ratio 9.5, and spark timing 145°). The first law of thermodynamics, equation of energy, mass conserving, equation of state, and mass fraction burned were all used in the creation of the software program. The study was carried out at five different nozzle diameters (0.250, 0.350, 0.450, 0.550, and 0.650 mm) and nozzle hole numbers (4,6,8,10,12). The results show that the GDI engine's performance and emissions are significantly influenced by variations in nozzle hole diameter and number. It was shown that engine power, heat transfer, cylinder pressure, and temperature increased with increasing nozzle hole diameter and number of nozzle holes and the maximum value was seen with nozzle hole diameter 0.650 mm and (12) holes. The lowest value for the nozzle hole diameter and number of holes was found to be 0.250 mm and 4 nozzle holes, which resulted in the lowest emissions of carbon monoxide CO and nitrogen monoxide NO. The study was also conducted for different operating conditions (Rotation Engine speed of 1000, 2000, 3000, 4000, 5000 rpm ,35 MPa injection pressure , compression ratio of 11.5 , and spark timing of 140° ) and the same nozzle diameters and nozzle holes number mentioned previously to estimate the maximum values for temperature, pressure, power , heat transfer and emissions . The results of the second part of the study showed that the highest of maximum values of temperature, pressure, and emissions were at of 1000 rpm, a nozzle diameter of 0.650 mm, and (12) holes. The highest values for maximum power at 4000 rpm, a nozzle diameter of 0.650 mm and (12) holes, while the highest maximum values for heat transfer are at 5000 rpm, a diameter of 0.65mm and (12) holes.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Nozzle Diameter and Holes Number on the Performance and Emissions of a Gasoline Direct Injection Engine\",\"authors\":\"Omar YOUSEF, Mahmoud MASHKOUR\",\"doi\":\"10.5541/ijot.1272871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of the current study is to estimate how a gasoline direct injection (GDI) engine's performance and emissions are affected by the fuel injector nozzle diameter and hole number of its injectors. A thermodynamic mathematical modelling has been created utilizing a software program written in the MATLAB language to simulate the two-zone combustion process of a four-stroke direct injection engine running on gasoline at (Rotation Engine Speed 3000 revolution per minute (rpm), 40 MPa injection pressure, compression ratio 9.5, and spark timing 145°). The first law of thermodynamics, equation of energy, mass conserving, equation of state, and mass fraction burned were all used in the creation of the software program. The study was carried out at five different nozzle diameters (0.250, 0.350, 0.450, 0.550, and 0.650 mm) and nozzle hole numbers (4,6,8,10,12). The results show that the GDI engine's performance and emissions are significantly influenced by variations in nozzle hole diameter and number. It was shown that engine power, heat transfer, cylinder pressure, and temperature increased with increasing nozzle hole diameter and number of nozzle holes and the maximum value was seen with nozzle hole diameter 0.650 mm and (12) holes. The lowest value for the nozzle hole diameter and number of holes was found to be 0.250 mm and 4 nozzle holes, which resulted in the lowest emissions of carbon monoxide CO and nitrogen monoxide NO. The study was also conducted for different operating conditions (Rotation Engine speed of 1000, 2000, 3000, 4000, 5000 rpm ,35 MPa injection pressure , compression ratio of 11.5 , and spark timing of 140° ) and the same nozzle diameters and nozzle holes number mentioned previously to estimate the maximum values for temperature, pressure, power , heat transfer and emissions . The results of the second part of the study showed that the highest of maximum values of temperature, pressure, and emissions were at of 1000 rpm, a nozzle diameter of 0.650 mm, and (12) holes. The highest values for maximum power at 4000 rpm, a nozzle diameter of 0.650 mm and (12) holes, while the highest maximum values for heat transfer are at 5000 rpm, a diameter of 0.65mm and (12) holes.\",\"PeriodicalId\":14438,\"journal\":{\"name\":\"International Journal of Thermodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5541/ijot.1272871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/ijot.1272871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Effects of Nozzle Diameter and Holes Number on the Performance and Emissions of a Gasoline Direct Injection Engine
The goal of the current study is to estimate how a gasoline direct injection (GDI) engine's performance and emissions are affected by the fuel injector nozzle diameter and hole number of its injectors. A thermodynamic mathematical modelling has been created utilizing a software program written in the MATLAB language to simulate the two-zone combustion process of a four-stroke direct injection engine running on gasoline at (Rotation Engine Speed 3000 revolution per minute (rpm), 40 MPa injection pressure, compression ratio 9.5, and spark timing 145°). The first law of thermodynamics, equation of energy, mass conserving, equation of state, and mass fraction burned were all used in the creation of the software program. The study was carried out at five different nozzle diameters (0.250, 0.350, 0.450, 0.550, and 0.650 mm) and nozzle hole numbers (4,6,8,10,12). The results show that the GDI engine's performance and emissions are significantly influenced by variations in nozzle hole diameter and number. It was shown that engine power, heat transfer, cylinder pressure, and temperature increased with increasing nozzle hole diameter and number of nozzle holes and the maximum value was seen with nozzle hole diameter 0.650 mm and (12) holes. The lowest value for the nozzle hole diameter and number of holes was found to be 0.250 mm and 4 nozzle holes, which resulted in the lowest emissions of carbon monoxide CO and nitrogen monoxide NO. The study was also conducted for different operating conditions (Rotation Engine speed of 1000, 2000, 3000, 4000, 5000 rpm ,35 MPa injection pressure , compression ratio of 11.5 , and spark timing of 140° ) and the same nozzle diameters and nozzle holes number mentioned previously to estimate the maximum values for temperature, pressure, power , heat transfer and emissions . The results of the second part of the study showed that the highest of maximum values of temperature, pressure, and emissions were at of 1000 rpm, a nozzle diameter of 0.650 mm, and (12) holes. The highest values for maximum power at 4000 rpm, a nozzle diameter of 0.650 mm and (12) holes, while the highest maximum values for heat transfer are at 5000 rpm, a diameter of 0.65mm and (12) holes.
期刊介绍:
The purpose and scope of the International Journal of Thermodynamics is · to provide a forum for the publication of original theoretical and applied work in the field of thermodynamics as it relates to systems, states, processes, and both non-equilibrium and equilibrium phenomena at all temporal and spatial scales. · to provide a multidisciplinary and international platform for the dissemination to academia and industry of both scientific and engineering contributions, which touch upon a broad class of disciplines that are foundationally linked to thermodynamics and the methods and analyses derived there from. · to assess how both the first and particularly the second laws of thermodynamics touch upon these disciplines. · to highlight innovative & pioneer research in the field of thermodynamics in the following subjects (but not limited to the following, novel research in new areas are strongly suggested): o Entropy in thermodynamics and information theory. o Thermodynamics in process intensification. o Biothermodynamics (topics such as self-organization far from equilibrium etc.) o Thermodynamics of nonadditive systems. o Nonequilibrium thermal complex systems. o Sustainable design and thermodynamics. o Engineering thermodynamics. o Energy.