随机比赛的几何学

Mario Sanchez, Brett Kolesnik
{"title":"随机比赛的几何学","authors":"Mario Sanchez, Brett Kolesnik","doi":"10.1007/s00454-023-00571-4","DOIUrl":null,"url":null,"abstract":"Abstract A tournament is an orientation of a graph. Each edge is a match, directed towards the winner. The score sequence lists the number of wins by each team. In this article, by interpreting score sequences geometrically, we generalize and extend classical theorems of Landau (Bull. Math. Biophys. 15 , 143–148 (1953)) and Moon (Pac. J. Math. 13 , 1343–1345 (1963)), via the theory of zonotopal tilings.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Geometry of Random Tournaments\",\"authors\":\"Mario Sanchez, Brett Kolesnik\",\"doi\":\"10.1007/s00454-023-00571-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A tournament is an orientation of a graph. Each edge is a match, directed towards the winner. The score sequence lists the number of wins by each team. In this article, by interpreting score sequences geometrically, we generalize and extend classical theorems of Landau (Bull. Math. Biophys. 15 , 143–148 (1953)) and Moon (Pac. J. Math. 13 , 1343–1345 (1963)), via the theory of zonotopal tilings.\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00571-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00571-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

竞赛是图的一个方向。每条边都是一根火柴,指向赢家。得分序列列出了每支球队的获胜次数。本文通过对分数序列的几何解释,对经典朗道定理进行了推广和推广。数学。生物物理,15,143-148(1953))和月亮(Pac. J.数学,13,1343-1345(1963)),通过地带性平铺理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Geometry of Random Tournaments

The Geometry of Random Tournaments
Abstract A tournament is an orientation of a graph. Each edge is a match, directed towards the winner. The score sequence lists the number of wins by each team. In this article, by interpreting score sequences geometrically, we generalize and extend classical theorems of Landau (Bull. Math. Biophys. 15 , 143–148 (1953)) and Moon (Pac. J. Math. 13 , 1343–1345 (1963)), via the theory of zonotopal tilings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信