{"title":"随机微分博弈中的非位置性、非线性和时间不一致性","authors":"Qian Lei, Chi Seng Pun","doi":"10.1111/mafi.12420","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the well-posedness of a class of nonlocal fully nonlinear parabolic systems, which nest the equilibrium Hamilton–Jacobi–Bellman (HJB) systems that characterize the time-consistent Nash equilibrium point of a stochastic differential game (SDG) with time-inconsistent (TIC) preferences. The nonlocality of the parabolic systems stems from the flow feature (controlled by an external temporal parameter) of the systems. This paper proves the existence and uniqueness results as well as the stability analysis for the solutions to such systems. We first obtain the results for the linear cases for an arbitrary time horizon and then extend them to the quasilinear and fully nonlinear cases under some suitable conditions. Two examples of TIC SDG are provided to illustrate financial applications with global solvability. Moreover, with the well-posedness results, we establish a general multidimensional Feynman–Kac formula in the presence of nonlocality (time inconsistency).</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlocality, nonlinearity, and time inconsistency in stochastic differential games\",\"authors\":\"Qian Lei, Chi Seng Pun\",\"doi\":\"10.1111/mafi.12420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies the well-posedness of a class of nonlocal fully nonlinear parabolic systems, which nest the equilibrium Hamilton–Jacobi–Bellman (HJB) systems that characterize the time-consistent Nash equilibrium point of a stochastic differential game (SDG) with time-inconsistent (TIC) preferences. The nonlocality of the parabolic systems stems from the flow feature (controlled by an external temporal parameter) of the systems. This paper proves the existence and uniqueness results as well as the stability analysis for the solutions to such systems. We first obtain the results for the linear cases for an arbitrary time horizon and then extend them to the quasilinear and fully nonlinear cases under some suitable conditions. Two examples of TIC SDG are provided to illustrate financial applications with global solvability. Moreover, with the well-posedness results, we establish a general multidimensional Feynman–Kac formula in the presence of nonlocality (time inconsistency).</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12420\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12420","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Nonlocality, nonlinearity, and time inconsistency in stochastic differential games
This paper studies the well-posedness of a class of nonlocal fully nonlinear parabolic systems, which nest the equilibrium Hamilton–Jacobi–Bellman (HJB) systems that characterize the time-consistent Nash equilibrium point of a stochastic differential game (SDG) with time-inconsistent (TIC) preferences. The nonlocality of the parabolic systems stems from the flow feature (controlled by an external temporal parameter) of the systems. This paper proves the existence and uniqueness results as well as the stability analysis for the solutions to such systems. We first obtain the results for the linear cases for an arbitrary time horizon and then extend them to the quasilinear and fully nonlinear cases under some suitable conditions. Two examples of TIC SDG are provided to illustrate financial applications with global solvability. Moreover, with the well-posedness results, we establish a general multidimensional Feynman–Kac formula in the presence of nonlocality (time inconsistency).
期刊介绍:
Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems.
The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.