Katharina Hess, Max Engel, Tasnim Patel, Polina Vakhrameeva, Andreas Koutsodendris, Eckehard Klemt, Thor H. Hansteen, Philipp Kempf, Sue Dawson, Isa Schön, Vanessa M. A. Heyvaert
{"title":"英国设得兰群岛湖沼沉积物中的北大西洋风暴洪水 1500 年记录","authors":"Katharina Hess, Max Engel, Tasnim Patel, Polina Vakhrameeva, Andreas Koutsodendris, Eckehard Klemt, Thor H. Hansteen, Philipp Kempf, Sue Dawson, Isa Schön, Vanessa M. A. Heyvaert","doi":"10.1002/jqs.3568","DOIUrl":null,"url":null,"abstract":"<p>Severe storm flooding poses a major hazard to the coasts of north-western Europe. However, the long-term recurrence patterns of extreme coastal flooding and their governing factors are poorly understood. Therefore, high-resolution sedimentary records of past North Atlantic storm flooding are required. This multi-proxy study reconstructs storm-induced overwash processes from coastal lake sediments on the Shetland Islands using grain-size and geochemical data, and the re-analysis of historical data. The chronostratigraphy is based on Bayesian age–depth modelling using accelerator mass spectrometry <sup>14</sup>C and <sup>137</sup>Cs data. A high XRF-based Si/Ti ratio and the unimodal grain-size distribution link the sand layers to the beach and thus storm-induced overwash events. Periods with more frequent storm flooding occurred 980–1050, 1150–1300, 1450–1550, 1820–1900 and 1950–2000 <span>ce,</span> which is largely consistent with a positive North Atlantic Oscillation mode. The Little Ice Age (1400–1850 <span>ce</span>) shows a gap of major sand layers suggesting a southward shift of storm tracks and a seasonal variance with more storm floods in spring and autumn. Warmer phases shifted winter storm tracks towards the north-east Atlantic, indicating a possible trend for future storm-track changes and increased storm flooding in the northern North Sea region.</p>","PeriodicalId":16929,"journal":{"name":"Journal of Quaternary Science","volume":"39 1","pages":"37-53"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jqs.3568","citationCount":"0","resultStr":"{\"title\":\"A 1500-year record of North Atlantic storm flooding from lacustrine sediments, Shetland Islands (UK)\",\"authors\":\"Katharina Hess, Max Engel, Tasnim Patel, Polina Vakhrameeva, Andreas Koutsodendris, Eckehard Klemt, Thor H. Hansteen, Philipp Kempf, Sue Dawson, Isa Schön, Vanessa M. A. Heyvaert\",\"doi\":\"10.1002/jqs.3568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Severe storm flooding poses a major hazard to the coasts of north-western Europe. However, the long-term recurrence patterns of extreme coastal flooding and their governing factors are poorly understood. Therefore, high-resolution sedimentary records of past North Atlantic storm flooding are required. This multi-proxy study reconstructs storm-induced overwash processes from coastal lake sediments on the Shetland Islands using grain-size and geochemical data, and the re-analysis of historical data. The chronostratigraphy is based on Bayesian age–depth modelling using accelerator mass spectrometry <sup>14</sup>C and <sup>137</sup>Cs data. A high XRF-based Si/Ti ratio and the unimodal grain-size distribution link the sand layers to the beach and thus storm-induced overwash events. Periods with more frequent storm flooding occurred 980–1050, 1150–1300, 1450–1550, 1820–1900 and 1950–2000 <span>ce,</span> which is largely consistent with a positive North Atlantic Oscillation mode. The Little Ice Age (1400–1850 <span>ce</span>) shows a gap of major sand layers suggesting a southward shift of storm tracks and a seasonal variance with more storm floods in spring and autumn. Warmer phases shifted winter storm tracks towards the north-east Atlantic, indicating a possible trend for future storm-track changes and increased storm flooding in the northern North Sea region.</p>\",\"PeriodicalId\":16929,\"journal\":{\"name\":\"Journal of Quaternary Science\",\"volume\":\"39 1\",\"pages\":\"37-53\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jqs.3568\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quaternary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jqs.3568\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quaternary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jqs.3568","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
A 1500-year record of North Atlantic storm flooding from lacustrine sediments, Shetland Islands (UK)
Severe storm flooding poses a major hazard to the coasts of north-western Europe. However, the long-term recurrence patterns of extreme coastal flooding and their governing factors are poorly understood. Therefore, high-resolution sedimentary records of past North Atlantic storm flooding are required. This multi-proxy study reconstructs storm-induced overwash processes from coastal lake sediments on the Shetland Islands using grain-size and geochemical data, and the re-analysis of historical data. The chronostratigraphy is based on Bayesian age–depth modelling using accelerator mass spectrometry 14C and 137Cs data. A high XRF-based Si/Ti ratio and the unimodal grain-size distribution link the sand layers to the beach and thus storm-induced overwash events. Periods with more frequent storm flooding occurred 980–1050, 1150–1300, 1450–1550, 1820–1900 and 1950–2000 ce, which is largely consistent with a positive North Atlantic Oscillation mode. The Little Ice Age (1400–1850 ce) shows a gap of major sand layers suggesting a southward shift of storm tracks and a seasonal variance with more storm floods in spring and autumn. Warmer phases shifted winter storm tracks towards the north-east Atlantic, indicating a possible trend for future storm-track changes and increased storm flooding in the northern North Sea region.
期刊介绍:
The Journal of Quaternary Science publishes original papers on any field of Quaternary research, and aims to promote a wider appreciation and deeper understanding of the earth''s history during the last 2.58 million years. Papers from a wide range of disciplines appear in JQS including, for example, Archaeology, Botany, Climatology, Geochemistry, Geochronology, Geology, Geomorphology, Geophysics, Glaciology, Limnology, Oceanography, Palaeoceanography, Palaeoclimatology, Palaeoecology, Palaeontology, Soil Science and Zoology. The journal particularly welcomes papers reporting the results of interdisciplinary or multidisciplinary research which are of wide international interest to Quaternary scientists. Short communications and correspondence relating to views and information contained in JQS may also be considered for publication.