{"title":"现场自适应测试","authors":"Samira Silva, Patrizio Pelliccione, Antonia Bertolino","doi":"10.1145/3627163","DOIUrl":null,"url":null,"abstract":"We are increasingly surrounded by systems connecting us with the digital world and facilitating our life by supporting our work, leisure, activities at home, health, etc. These systems are pressed by two forces. On the one side, they operate in environments that are increasingly challenging due to uncertainty and uncontrollability. On the other side, they need to evolve, often in a continuous fashion, to meet changing needs, to offer new functionalities, or also to fix emerging failures. To make the picture even more complex, these systems rarely work in isolation and often need to collaborate with other systems, as well as humans. All such facets call for moving their validation during operation, as offered by approaches called testing in the field. In this paper, we observe that even the field-based testing approaches should change over time to follow and adapt to the changes and evolution of collaborating systems or environments or users’ behaviors. We provide a taxonomy of this new category of testing that we call self-adaptive testing in the field (SATF), together with a reference architecture for SATF approaches. To achieve this objective, we surveyed the literature and collected feedback and contributions from experts in the domain via a questionnaire and interviews.","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"1 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Adaptive Testing in the Field\",\"authors\":\"Samira Silva, Patrizio Pelliccione, Antonia Bertolino\",\"doi\":\"10.1145/3627163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are increasingly surrounded by systems connecting us with the digital world and facilitating our life by supporting our work, leisure, activities at home, health, etc. These systems are pressed by two forces. On the one side, they operate in environments that are increasingly challenging due to uncertainty and uncontrollability. On the other side, they need to evolve, often in a continuous fashion, to meet changing needs, to offer new functionalities, or also to fix emerging failures. To make the picture even more complex, these systems rarely work in isolation and often need to collaborate with other systems, as well as humans. All such facets call for moving their validation during operation, as offered by approaches called testing in the field. In this paper, we observe that even the field-based testing approaches should change over time to follow and adapt to the changes and evolution of collaborating systems or environments or users’ behaviors. We provide a taxonomy of this new category of testing that we call self-adaptive testing in the field (SATF), together with a reference architecture for SATF approaches. To achieve this objective, we surveyed the literature and collected feedback and contributions from experts in the domain via a questionnaire and interviews.\",\"PeriodicalId\":50919,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3627163\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627163","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
We are increasingly surrounded by systems connecting us with the digital world and facilitating our life by supporting our work, leisure, activities at home, health, etc. These systems are pressed by two forces. On the one side, they operate in environments that are increasingly challenging due to uncertainty and uncontrollability. On the other side, they need to evolve, often in a continuous fashion, to meet changing needs, to offer new functionalities, or also to fix emerging failures. To make the picture even more complex, these systems rarely work in isolation and often need to collaborate with other systems, as well as humans. All such facets call for moving their validation during operation, as offered by approaches called testing in the field. In this paper, we observe that even the field-based testing approaches should change over time to follow and adapt to the changes and evolution of collaborating systems or environments or users’ behaviors. We provide a taxonomy of this new category of testing that we call self-adaptive testing in the field (SATF), together with a reference architecture for SATF approaches. To achieve this objective, we surveyed the literature and collected feedback and contributions from experts in the domain via a questionnaire and interviews.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.