Jonah T. Hansen, Samuel Wade, Michael J. Ireland, Tony D. Travouillon, Tiphaine Lagadec, Nicholas Herrald, Joice Mathew, Stephanie Monty, Adam D. Rains
{"title":"Pyxis:地层飞行光学干涉测量的地面演示器","authors":"Jonah T. Hansen, Samuel Wade, Michael J. Ireland, Tony D. Travouillon, Tiphaine Lagadec, Nicholas Herrald, Joice Mathew, Stephanie Monty, Adam D. Rains","doi":"10.1117/1.jatis.9.4.045001","DOIUrl":null,"url":null,"abstract":"In the past few years, there has been a resurgence in studies of space-based optical/infrared interferometry, particularly with the vision to use the technique to discover and characterize temperate Earth-like exoplanets around solar analogs. One of the key technological leaps needed to make such a mission feasible is demonstrating that formation flying precision at the level needed for interferometry is possible. Here, we present Pyxis, a ground-based demonstrator for a future small satellite mission with the aim to demonstrate the precision metrology needed for space-based interferometry. We describe the science potential of such a ground-based instrument and detail the various subsystems: three six-axis robots, a multi-stage metrology system, an integrated optics beam combiner, and the control systems required for the necessary precision and stability. We conclude by looking toward the next stage of Pyxis: a collection of small satellites in Earth orbit.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":"28 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyxis: a ground-based demonstrator for formation-flying optical interferometry\",\"authors\":\"Jonah T. Hansen, Samuel Wade, Michael J. Ireland, Tony D. Travouillon, Tiphaine Lagadec, Nicholas Herrald, Joice Mathew, Stephanie Monty, Adam D. Rains\",\"doi\":\"10.1117/1.jatis.9.4.045001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past few years, there has been a resurgence in studies of space-based optical/infrared interferometry, particularly with the vision to use the technique to discover and characterize temperate Earth-like exoplanets around solar analogs. One of the key technological leaps needed to make such a mission feasible is demonstrating that formation flying precision at the level needed for interferometry is possible. Here, we present Pyxis, a ground-based demonstrator for a future small satellite mission with the aim to demonstrate the precision metrology needed for space-based interferometry. We describe the science potential of such a ground-based instrument and detail the various subsystems: three six-axis robots, a multi-stage metrology system, an integrated optics beam combiner, and the control systems required for the necessary precision and stability. We conclude by looking toward the next stage of Pyxis: a collection of small satellites in Earth orbit.\",\"PeriodicalId\":54342,\"journal\":{\"name\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jatis.9.4.045001\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.jatis.9.4.045001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Pyxis: a ground-based demonstrator for formation-flying optical interferometry
In the past few years, there has been a resurgence in studies of space-based optical/infrared interferometry, particularly with the vision to use the technique to discover and characterize temperate Earth-like exoplanets around solar analogs. One of the key technological leaps needed to make such a mission feasible is demonstrating that formation flying precision at the level needed for interferometry is possible. Here, we present Pyxis, a ground-based demonstrator for a future small satellite mission with the aim to demonstrate the precision metrology needed for space-based interferometry. We describe the science potential of such a ground-based instrument and detail the various subsystems: three six-axis robots, a multi-stage metrology system, an integrated optics beam combiner, and the control systems required for the necessary precision and stability. We conclude by looking toward the next stage of Pyxis: a collection of small satellites in Earth orbit.
期刊介绍:
The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.