价值对股票指数期权的实际应用:预期-未实现-波动率和预测分布

J. Benson Durham
{"title":"价值对股票指数期权的实际应用:预期-未实现-波动率和预测分布","authors":"J. Benson Durham","doi":"10.3905/pa.2023.pa570","DOIUrl":null,"url":null,"abstract":"In <ext-link><bold><italic>Value for Equity Index Options: Expected—Not Realized—Volatility and the Distribution of Forecasts</italic></bold></ext-link>, from the November 2022 issue of <bold><italic>The Journal of Portfolio Management</italic></bold>, <bold>J. Benson Durham</bold> of <bold>Piper Sandler</bold> demonstrates that anticipated rather than “realized” volatility is more useful for option traders and other investors who must assess the levels of risk and fear in option markets. Durham estimates expected volatility and the distribution around volatility forecasts using six generalized autoregressive conditional heteroskedasticity (GARCH) models. GARCH is a statistical approach that analyzes time-series data to estimate the amount of volatility and the changes in volatility over time, as opposed to common measures based on arbitrarily chosen rolling windows or asset returns. Durham argues that using multiple GARCH models gives practitioners a better, forward-looking estimate of implied volatility, the key input in option pricing models. Durham offers investment practitioners an alternative method for determining the value of at-the-money equity options. His approach departs from the traditional, backward-looking volatility inputs commonly used in option models. Further, he explains that implied volatility embeds not only expected volatility, but also a risk premium for variation in volatility. He underscores the importance of incorporating forward-looking instead of historical inputs for equity option valuation because all asset prices reflect expectations for the future, not the past.","PeriodicalId":500434,"journal":{"name":"Practical applications of institutional investor journals","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Applications of Value for Equity Index Options: Expected—Not Realized—Volatility and the Distribution of Forecasts\",\"authors\":\"J. Benson Durham\",\"doi\":\"10.3905/pa.2023.pa570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In <ext-link><bold><italic>Value for Equity Index Options: Expected—Not Realized—Volatility and the Distribution of Forecasts</italic></bold></ext-link>, from the November 2022 issue of <bold><italic>The Journal of Portfolio Management</italic></bold>, <bold>J. Benson Durham</bold> of <bold>Piper Sandler</bold> demonstrates that anticipated rather than “realized” volatility is more useful for option traders and other investors who must assess the levels of risk and fear in option markets. Durham estimates expected volatility and the distribution around volatility forecasts using six generalized autoregressive conditional heteroskedasticity (GARCH) models. GARCH is a statistical approach that analyzes time-series data to estimate the amount of volatility and the changes in volatility over time, as opposed to common measures based on arbitrarily chosen rolling windows or asset returns. Durham argues that using multiple GARCH models gives practitioners a better, forward-looking estimate of implied volatility, the key input in option pricing models. Durham offers investment practitioners an alternative method for determining the value of at-the-money equity options. His approach departs from the traditional, backward-looking volatility inputs commonly used in option models. Further, he explains that implied volatility embeds not only expected volatility, but also a risk premium for variation in volatility. He underscores the importance of incorporating forward-looking instead of historical inputs for equity option valuation because all asset prices reflect expectations for the future, not the past.\",\"PeriodicalId\":500434,\"journal\":{\"name\":\"Practical applications of institutional investor journals\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Practical applications of institutional investor journals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/pa.2023.pa570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical applications of institutional investor journals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/pa.2023.pa570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Piper Sandler的J. Benson Durham在《股票指数期权的价值:预期的-未实现的-波动率和预测的分布》一篇文章中表明,对于期权交易者和其他必须评估期权市场风险和恐惧水平的投资者来说,预期的波动率比“实现的”波动率更有用。Durham使用六个广义自回归条件异方差(GARCH)模型估计预期波动率和波动率预测周围的分布。GARCH是一种统计方法,通过分析时间序列数据来估计波动性的大小和波动性随时间的变化,而不是基于任意选择的滚动窗口或资产回报的常用测量方法。Durham认为,使用多个GARCH模型可以让从业者更好地对隐含波动率进行前瞻性估计,隐含波动率是期权定价模型的关键输入。达勒姆为投资从业者提供了另一种方法来确定股票期权的价值。他的方法与期权模型中常用的传统的、向后看的波动性输入不同。此外,他还解释说,隐含波动率不仅包含预期波动率,还包含波动率变化的风险溢价。他强调了将前瞻性而非历史因素纳入股票期权估值的重要性,因为所有资产价格反映的都是对未来的预期,而不是过去的预期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical Applications of Value for Equity Index Options: Expected—Not Realized—Volatility and the Distribution of Forecasts
In Value for Equity Index Options: Expected—Not Realized—Volatility and the Distribution of Forecasts, from the November 2022 issue of The Journal of Portfolio Management, J. Benson Durham of Piper Sandler demonstrates that anticipated rather than “realized” volatility is more useful for option traders and other investors who must assess the levels of risk and fear in option markets. Durham estimates expected volatility and the distribution around volatility forecasts using six generalized autoregressive conditional heteroskedasticity (GARCH) models. GARCH is a statistical approach that analyzes time-series data to estimate the amount of volatility and the changes in volatility over time, as opposed to common measures based on arbitrarily chosen rolling windows or asset returns. Durham argues that using multiple GARCH models gives practitioners a better, forward-looking estimate of implied volatility, the key input in option pricing models. Durham offers investment practitioners an alternative method for determining the value of at-the-money equity options. His approach departs from the traditional, backward-looking volatility inputs commonly used in option models. Further, he explains that implied volatility embeds not only expected volatility, but also a risk premium for variation in volatility. He underscores the importance of incorporating forward-looking instead of historical inputs for equity option valuation because all asset prices reflect expectations for the future, not the past.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信