Kyurae Kim , Myung-Ho Kim , Ji In Kang , Jong-In Baek , Byeong-Min Jeon , Ho Min Kim , Sun-Chang Kim , Won-Il Jeong
{"title":"人参皂苷 F2 通过改变肝 X 受体核心调节因子的结合亲和力抑制肝脏脂肪变性和炎症反应","authors":"Kyurae Kim , Myung-Ho Kim , Ji In Kang , Jong-In Baek , Byeong-Min Jeon , Ho Min Kim , Sun-Chang Kim , Won-Il Jeong","doi":"10.1016/j.jgr.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Ginsenoside F2 (GF2), the protopanaxadiol-type constituent in <em>Panax ginseng</em>, has been reported to attenuate metabolic dysfunction-associated steatotic liver disease (MASLD). However, the mechanism of action is not fully understood. Here, this study investigates the molecular mechanism by which GF2 regulates MASLD progression through liver X receptor (LXR).</p></div><div><h3>Methods</h3><p>To demonstrate the effect of GF2 on LXR activity, computational modeling of protein-ligand binding, Time-resolved fluorescence resonance energy transfer (TR-FRET) assay for LXR cofactor recruitment, and luciferase reporter assay were performed. LXR agonist T0901317 was used for LXR activation in hepatocytes and macrophages. MASLD was induced by high-fat diet (HFD) feeding with or without GF2 administration in WT and LXRα<sup>−/−</sup> mice.</p></div><div><h3>Results</h3><p>Computational modeling showed that GF2 had a high affinity with LXRα. LXRE-luciferase reporter assay with amino acid substitution at the predicted ligand binding site revealed that the S264 residue of LXRα was the crucial interaction site of GF2. TR-FRET assay demonstrated that GF2 suppressed LXRα activity by favoring the binding of corepressors to LXRα while inhibiting the accessibility of coactivators. <em>In vitro</em>, GF2 treatments reduced T0901317-induced fat accumulation and pro-inflammatory cytokine expression in hepatocytes and macrophages, respectively. Consistently, GF2 administration ameliorated hepatic steatohepatitis and improved glucose or insulin tolerance in WT but not in LXRα<sup>−/−</sup> mice.</p></div><div><h3>Conclusion</h3><p>GF2 alters the binding affinities of LXRα coregulators, thereby interrupting hepatic steatosis and inflammation in macrophages. Therefore, we propose that GF2 might be a potential therapeutic agent for the intervention in patients with MASLD.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 1","pages":"Pages 89-97"},"PeriodicalIF":6.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S122684532300146X/pdfft?md5=ff5cd1fa17a0da7a9f3a6c928f72fe3e&pid=1-s2.0-S122684532300146X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ginsenoside F2 Restrains Hepatic Steatosis and Inflammation by Altering the Binding Affinity of Liver X Receptor Coregulators\",\"authors\":\"Kyurae Kim , Myung-Ho Kim , Ji In Kang , Jong-In Baek , Byeong-Min Jeon , Ho Min Kim , Sun-Chang Kim , Won-Il Jeong\",\"doi\":\"10.1016/j.jgr.2023.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Ginsenoside F2 (GF2), the protopanaxadiol-type constituent in <em>Panax ginseng</em>, has been reported to attenuate metabolic dysfunction-associated steatotic liver disease (MASLD). However, the mechanism of action is not fully understood. Here, this study investigates the molecular mechanism by which GF2 regulates MASLD progression through liver X receptor (LXR).</p></div><div><h3>Methods</h3><p>To demonstrate the effect of GF2 on LXR activity, computational modeling of protein-ligand binding, Time-resolved fluorescence resonance energy transfer (TR-FRET) assay for LXR cofactor recruitment, and luciferase reporter assay were performed. LXR agonist T0901317 was used for LXR activation in hepatocytes and macrophages. MASLD was induced by high-fat diet (HFD) feeding with or without GF2 administration in WT and LXRα<sup>−/−</sup> mice.</p></div><div><h3>Results</h3><p>Computational modeling showed that GF2 had a high affinity with LXRα. LXRE-luciferase reporter assay with amino acid substitution at the predicted ligand binding site revealed that the S264 residue of LXRα was the crucial interaction site of GF2. TR-FRET assay demonstrated that GF2 suppressed LXRα activity by favoring the binding of corepressors to LXRα while inhibiting the accessibility of coactivators. <em>In vitro</em>, GF2 treatments reduced T0901317-induced fat accumulation and pro-inflammatory cytokine expression in hepatocytes and macrophages, respectively. Consistently, GF2 administration ameliorated hepatic steatohepatitis and improved glucose or insulin tolerance in WT but not in LXRα<sup>−/−</sup> mice.</p></div><div><h3>Conclusion</h3><p>GF2 alters the binding affinities of LXRα coregulators, thereby interrupting hepatic steatosis and inflammation in macrophages. Therefore, we propose that GF2 might be a potential therapeutic agent for the intervention in patients with MASLD.</p></div>\",\"PeriodicalId\":16035,\"journal\":{\"name\":\"Journal of Ginseng Research\",\"volume\":\"48 1\",\"pages\":\"Pages 89-97\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S122684532300146X/pdfft?md5=ff5cd1fa17a0da7a9f3a6c928f72fe3e&pid=1-s2.0-S122684532300146X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ginseng Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S122684532300146X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ginseng Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S122684532300146X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Ginsenoside F2 Restrains Hepatic Steatosis and Inflammation by Altering the Binding Affinity of Liver X Receptor Coregulators
Background
Ginsenoside F2 (GF2), the protopanaxadiol-type constituent in Panax ginseng, has been reported to attenuate metabolic dysfunction-associated steatotic liver disease (MASLD). However, the mechanism of action is not fully understood. Here, this study investigates the molecular mechanism by which GF2 regulates MASLD progression through liver X receptor (LXR).
Methods
To demonstrate the effect of GF2 on LXR activity, computational modeling of protein-ligand binding, Time-resolved fluorescence resonance energy transfer (TR-FRET) assay for LXR cofactor recruitment, and luciferase reporter assay were performed. LXR agonist T0901317 was used for LXR activation in hepatocytes and macrophages. MASLD was induced by high-fat diet (HFD) feeding with or without GF2 administration in WT and LXRα−/− mice.
Results
Computational modeling showed that GF2 had a high affinity with LXRα. LXRE-luciferase reporter assay with amino acid substitution at the predicted ligand binding site revealed that the S264 residue of LXRα was the crucial interaction site of GF2. TR-FRET assay demonstrated that GF2 suppressed LXRα activity by favoring the binding of corepressors to LXRα while inhibiting the accessibility of coactivators. In vitro, GF2 treatments reduced T0901317-induced fat accumulation and pro-inflammatory cytokine expression in hepatocytes and macrophages, respectively. Consistently, GF2 administration ameliorated hepatic steatohepatitis and improved glucose or insulin tolerance in WT but not in LXRα−/− mice.
Conclusion
GF2 alters the binding affinities of LXRα coregulators, thereby interrupting hepatic steatosis and inflammation in macrophages. Therefore, we propose that GF2 might be a potential therapeutic agent for the intervention in patients with MASLD.
期刊介绍:
Journal of Ginseng Research (JGR) is an official, open access journal of the Korean Society of Ginseng and is the only international journal publishing scholarly reports on ginseng research in the world. The journal is a bimonthly peer-reviewed publication featuring high-quality studies related to basic, pre-clinical, and clinical researches on ginseng to reflect recent progresses in ginseng research.
JGR publishes papers, either experimental or theoretical, that advance our understanding of ginseng science, including plant sciences, biology, chemistry, pharmacology, toxicology, pharmacokinetics, veterinary medicine, biochemistry, manufacture, and clinical study of ginseng since 1976. It also includes the new paradigm of integrative research, covering alternative medicinal approaches. Article types considered for publication include review articles, original research articles, and brief reports.
JGR helps researchers to understand mechanisms for traditional efficacy of ginseng and to put their clinical evidence together. It provides balanced information on basic science and clinical applications to researchers, manufacturers, practitioners, teachers, scholars, and medical doctors.