利用(6+3)自由度并联机器人的运动冗余实现平台的无限旋转

IF 2.2 4区 计算机科学 Q2 ENGINEERING, MECHANICAL
Arda Yigit, David Breton, Clement Gosselin
{"title":"利用(6+3)自由度并联机器人的运动冗余实现平台的无限旋转","authors":"Arda Yigit, David Breton, Clement Gosselin","doi":"10.1115/1.4063407","DOIUrl":null,"url":null,"abstract":"Abstract Mechanical interference and singularities within the reachable workspace often restrict the orientational workspace of parallel robots. Introducing kinematic redundancy can alleviate this limitation. This paper discusses the possibility to produce unlimited rotation of the platform of a tripedal (6 + 3)-degree-of-freedom kinematically redundant parallel robot. The articulated platform of such a robot has three degrees of mobility. The platforms considered here are planar linkages that contain either revolute or prismatic joints. It is shown that at least two revolute joints are required to produce unlimited rotation with appropriate design and initial configuration, while the platforms with two prismatic joints cannot produce such rotations without crossing a singularity.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":"45 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting the Kinematic Redundancy of a (6+3)-DoF Parallel Manipulator to Produce Unlimited Rotation of the Platform\",\"authors\":\"Arda Yigit, David Breton, Clement Gosselin\",\"doi\":\"10.1115/1.4063407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Mechanical interference and singularities within the reachable workspace often restrict the orientational workspace of parallel robots. Introducing kinematic redundancy can alleviate this limitation. This paper discusses the possibility to produce unlimited rotation of the platform of a tripedal (6 + 3)-degree-of-freedom kinematically redundant parallel robot. The articulated platform of such a robot has three degrees of mobility. The platforms considered here are planar linkages that contain either revolute or prismatic joints. It is shown that at least two revolute joints are required to produce unlimited rotation with appropriate design and initial configuration, while the platforms with two prismatic joints cannot produce such rotations without crossing a singularity.\",\"PeriodicalId\":49155,\"journal\":{\"name\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063407\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063407","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

可达工作空间内的机械干扰和奇异性制约了并联机器人的定向工作空间。引入运动冗余可以缓解这一限制。本文讨论了三足(6 + 3)自由度运动冗余并联机器人平台产生无限旋转的可能性。这种机器人的铰接式平台具有三个移动度。这里考虑的平台是平面连杆机构,包含转动或移动关节。结果表明,在适当的设计和初始构型下,要实现无限旋转,至少需要两个转动关节,而具有两个移动关节的平台在不越过奇点的情况下无法实现无限旋转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting the Kinematic Redundancy of a (6+3)-DoF Parallel Manipulator to Produce Unlimited Rotation of the Platform
Abstract Mechanical interference and singularities within the reachable workspace often restrict the orientational workspace of parallel robots. Introducing kinematic redundancy can alleviate this limitation. This paper discusses the possibility to produce unlimited rotation of the platform of a tripedal (6 + 3)-degree-of-freedom kinematically redundant parallel robot. The articulated platform of such a robot has three degrees of mobility. The platforms considered here are planar linkages that contain either revolute or prismatic joints. It is shown that at least two revolute joints are required to produce unlimited rotation with appropriate design and initial configuration, while the platforms with two prismatic joints cannot produce such rotations without crossing a singularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
15.40%
发文量
131
审稿时长
4.5 months
期刊介绍: Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信