{"title":"基于双向长短期记忆网络的非正交多址无线系统信号识别","authors":"Neeraj Dwivedi, Sachin Kumar, Sudeep Tanwar, Sudhanshu Tyagi","doi":"10.52783/tjjpt.v44.i3.697","DOIUrl":null,"url":null,"abstract":"This study's goal is to provide an early analysis of deep learning (DL) for signal identification in wireless systems that use non-orthogonal multiple access (NOMA). The successive interference cancellation (SIC) approach is frequently used at the receiver in NOMA systems when several users are decoded successively. Without explicitly calculating channels, a DL-based NOMA receiver can decode messages for several users at once. To estimate the multiuser uplink channel (CE) and recognize the initial broadcast signal in this study, it is recommended that a deep neural network with bi-directional long short-term memory (Bi-LSTM) be utilized. The suggested Bi-LSTM model, in contrast to conventional CE techniques, may immediately retrieve transmission signals impacted by channel distortion. During the offline training phase, the Bi-LTSM model is trained using simulation data based on channel statistics. The trained model is then applied to retrieve the transmitted symbols in the stage of online deployment. According to the findings, the DL method could outperform a maximum probability detector that considers interference effects when inter-symbol interference is substantial.","PeriodicalId":39883,"journal":{"name":"推进技术","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signal Identification in Non-Orthogonal Multiple Access Wireless Systems Using Bi-Directional Long Short-Term Memory Network\",\"authors\":\"Neeraj Dwivedi, Sachin Kumar, Sudeep Tanwar, Sudhanshu Tyagi\",\"doi\":\"10.52783/tjjpt.v44.i3.697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study's goal is to provide an early analysis of deep learning (DL) for signal identification in wireless systems that use non-orthogonal multiple access (NOMA). The successive interference cancellation (SIC) approach is frequently used at the receiver in NOMA systems when several users are decoded successively. Without explicitly calculating channels, a DL-based NOMA receiver can decode messages for several users at once. To estimate the multiuser uplink channel (CE) and recognize the initial broadcast signal in this study, it is recommended that a deep neural network with bi-directional long short-term memory (Bi-LSTM) be utilized. The suggested Bi-LSTM model, in contrast to conventional CE techniques, may immediately retrieve transmission signals impacted by channel distortion. During the offline training phase, the Bi-LTSM model is trained using simulation data based on channel statistics. The trained model is then applied to retrieve the transmitted symbols in the stage of online deployment. According to the findings, the DL method could outperform a maximum probability detector that considers interference effects when inter-symbol interference is substantial.\",\"PeriodicalId\":39883,\"journal\":{\"name\":\"推进技术\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"推进技术\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52783/tjjpt.v44.i3.697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"推进技术","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/tjjpt.v44.i3.697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Signal Identification in Non-Orthogonal Multiple Access Wireless Systems Using Bi-Directional Long Short-Term Memory Network
This study's goal is to provide an early analysis of deep learning (DL) for signal identification in wireless systems that use non-orthogonal multiple access (NOMA). The successive interference cancellation (SIC) approach is frequently used at the receiver in NOMA systems when several users are decoded successively. Without explicitly calculating channels, a DL-based NOMA receiver can decode messages for several users at once. To estimate the multiuser uplink channel (CE) and recognize the initial broadcast signal in this study, it is recommended that a deep neural network with bi-directional long short-term memory (Bi-LSTM) be utilized. The suggested Bi-LSTM model, in contrast to conventional CE techniques, may immediately retrieve transmission signals impacted by channel distortion. During the offline training phase, the Bi-LTSM model is trained using simulation data based on channel statistics. The trained model is then applied to retrieve the transmitted symbols in the stage of online deployment. According to the findings, the DL method could outperform a maximum probability detector that considers interference effects when inter-symbol interference is substantial.
期刊介绍:
"Propulsion Technology" is supervised by China Aerospace Science and Industry Corporation and sponsored by the 31st Institute of China Aerospace Science and Industry Corporation. It is an important journal of Chinese degree and graduate education determined by the Academic Degree Committee of the State Council and the State Education Commission. It was founded in 1980 and is a monthly publication, which is publicly distributed at home and abroad.
Purpose of the publication: Adhere to the principles of quality, specialization, standardized editing, and scientific management, publish academic papers on theoretical research, design, and testing of various aircraft, UAVs, missiles, launch vehicles, spacecraft, and ship propulsion systems, and promote the development and progress of turbines, ramjets, rockets, detonation, lasers, nuclear energy, electric propulsion, joint propulsion, new concepts, and new propulsion technologies.