原位合成bismaleimide-DDE@CCTO杂化纳米纤维填充的聚醚酰亚胺纳米复合材料改善了介电和界面性能

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Peiyuan Zuo, Bowen Sun, Donglin Chen, Lianping Yuan, Yi Chen, Jingyu Lin, Qixin Zhuang
{"title":"原位合成bismaleimide-DDE@CCTO杂化纳米纤维填充的聚醚酰亚胺纳米复合材料改善了介电和界面性能","authors":"Peiyuan Zuo, Bowen Sun, Donglin Chen, Lianping Yuan, Yi Chen, Jingyu Lin, Qixin Zhuang","doi":"10.1049/nde2.12066","DOIUrl":null,"url":null,"abstract":"Most current research of nanocomposite dielectrics for modern electronic devices and electric equipment usually focuses more on dielectric properties while in some extent ignoring the interfacial adhesion characteristics. However, the poor interfacial adhesion frequently results in serious dielectric field distortion, which would in return impair the dielectric performance enhancement. As such, how to simultaneously achieve the excellent dielectric properties and interfacial adhesion performance in organic‐inorganic nanocomposite system is worth in‐depth investigation. To realise this aim, novel hybrid nanofibers are neatly fabricated using in situ copolymerisation reaction of bismaleimide and diamino‐diphenyl ether monomers on the CCTO nanofiller surface via covalent bond connections. The resulting nanocomposites achieve high dielectric constant (9.3) and low dielectric loss (0.0185) at 1 kHz. The BMI‐DDE@CCTO/PEI yields a high discharge energy density (3.09 J/cm3) at moderate electric field (200 MV/m). Noticeably, the nanocomposites enable stable dielectric performance over a wide temperature range from room temperature to 150°C. Moreover, the binding energy for BMI‐DDE and PEI is 1052 kJ/mol according to DFT calculation. As such, the authors speculate this interesting study would inspire the broad researchers devoting to investigating bismaleimide‐coated high‐aspect‐ratio nanofillers and their dielectric materials for collaboratively improved dielectric and interfacial performance.","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"6 4","pages":"246-256"},"PeriodicalIF":3.8000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12066","citationCount":"0","resultStr":"{\"title\":\"Polyetherimide nanocomposites filled with in-situ synthesised bismaleimide-DDE@CCTO hybrid nanofibers enabling improved dielectric and interfacial performance\",\"authors\":\"Peiyuan Zuo, Bowen Sun, Donglin Chen, Lianping Yuan, Yi Chen, Jingyu Lin, Qixin Zhuang\",\"doi\":\"10.1049/nde2.12066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most current research of nanocomposite dielectrics for modern electronic devices and electric equipment usually focuses more on dielectric properties while in some extent ignoring the interfacial adhesion characteristics. However, the poor interfacial adhesion frequently results in serious dielectric field distortion, which would in return impair the dielectric performance enhancement. As such, how to simultaneously achieve the excellent dielectric properties and interfacial adhesion performance in organic‐inorganic nanocomposite system is worth in‐depth investigation. To realise this aim, novel hybrid nanofibers are neatly fabricated using in situ copolymerisation reaction of bismaleimide and diamino‐diphenyl ether monomers on the CCTO nanofiller surface via covalent bond connections. The resulting nanocomposites achieve high dielectric constant (9.3) and low dielectric loss (0.0185) at 1 kHz. The BMI‐DDE@CCTO/PEI yields a high discharge energy density (3.09 J/cm3) at moderate electric field (200 MV/m). Noticeably, the nanocomposites enable stable dielectric performance over a wide temperature range from room temperature to 150°C. Moreover, the binding energy for BMI‐DDE and PEI is 1052 kJ/mol according to DFT calculation. As such, the authors speculate this interesting study would inspire the broad researchers devoting to investigating bismaleimide‐coated high‐aspect‐ratio nanofillers and their dielectric materials for collaboratively improved dielectric and interfacial performance.\",\"PeriodicalId\":36855,\"journal\":{\"name\":\"IET Nanodielectrics\",\"volume\":\"6 4\",\"pages\":\"246-256\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12066\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Nanodielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

目前,用于现代电子器件和电气设备的纳米复合介电材料的研究大多集中在介电性能上,而在一定程度上忽略了其界面粘附特性。然而,界面粘附不良往往会导致严重的介电场畸变,从而影响介电性能的提高。因此,如何在有机-无机纳米复合体系中同时获得优异的介电性能和界面粘附性能是值得深入研究的问题。为了实现这一目标,利用双马来酰亚胺和二氨基-二苯基醚单体在CCTO纳米填料表面通过共价键连接的原位共聚反应,整齐地制备了新型杂交纳米纤维。所得的纳米复合材料在1 kHz时具有高介电常数(9.3)和低介电损耗(0.0185)。BMI-DDE@CCTO/PEI在中等电场(200 MV/m)下产生高的放电能量密度(3.09 J/cm3)。值得注意的是,纳米复合材料在室温到150°C的宽温度范围内具有稳定的介电性能。此外,根据DFT计算,BMI-DDE和PEI的结合能为1052 kJ/mol。因此,作者推测这一有趣的研究将激发广泛的研究人员致力于研究双马来酰亚胺涂层的高纵横比纳米填料及其介电材料,以共同改善介电和界面性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polyetherimide nanocomposites filled with in-situ synthesised bismaleimide-DDE@CCTO hybrid nanofibers enabling improved dielectric and interfacial performance

Polyetherimide nanocomposites filled with in-situ synthesised bismaleimide-DDE@CCTO hybrid nanofibers enabling improved dielectric and interfacial performance
Most current research of nanocomposite dielectrics for modern electronic devices and electric equipment usually focuses more on dielectric properties while in some extent ignoring the interfacial adhesion characteristics. However, the poor interfacial adhesion frequently results in serious dielectric field distortion, which would in return impair the dielectric performance enhancement. As such, how to simultaneously achieve the excellent dielectric properties and interfacial adhesion performance in organic‐inorganic nanocomposite system is worth in‐depth investigation. To realise this aim, novel hybrid nanofibers are neatly fabricated using in situ copolymerisation reaction of bismaleimide and diamino‐diphenyl ether monomers on the CCTO nanofiller surface via covalent bond connections. The resulting nanocomposites achieve high dielectric constant (9.3) and low dielectric loss (0.0185) at 1 kHz. The BMI‐DDE@CCTO/PEI yields a high discharge energy density (3.09 J/cm3) at moderate electric field (200 MV/m). Noticeably, the nanocomposites enable stable dielectric performance over a wide temperature range from room temperature to 150°C. Moreover, the binding energy for BMI‐DDE and PEI is 1052 kJ/mol according to DFT calculation. As such, the authors speculate this interesting study would inspire the broad researchers devoting to investigating bismaleimide‐coated high‐aspect‐ratio nanofillers and their dielectric materials for collaboratively improved dielectric and interfacial performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信