仿射户田理论中从树到环的简约性 II:高阶极点和切割分解

IF 5 1区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS
Patrick Dorey, Davide Polvara
{"title":"仿射户田理论中从树到环的简约性 II:高阶极点和切割分解","authors":"Patrick Dorey,&nbsp;Davide Polvara","doi":"10.1007/JHEP10(2023)177","DOIUrl":null,"url":null,"abstract":"<p>Recently we showed how, in two-dimensional scalar theories, one-loop threshold diagrams can be cut into the product of one or more tree-level diagrams [1]. Using this method on the ADE series of Toda models, we computed the double- and single-pole coefficients of the Laurent expansion of the S-matrix around a pole of arbitrary even order, finding agreement with the bootstrapped results. Here we generalise the cut method explained in [1] to multiple loops and use it to simplify large networks of singular diagrams. We observe that only a small number of cut diagrams survive and contribute to the expected bootstrapped result, while most of them cancel each other out through a mechanism inherited from the tree-level integrability of these models. The simplification mechanism between cut diagrams inside networks is reminiscent of Gauss’s theorem in the space of Feynman diagrams.</p>","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":"2023 10","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP10(2023)177.pdf","citationCount":"0","resultStr":"{\"title\":\"From tree- to loop-simplicity in affine Toda theories II: higher-order poles and cut decompositions\",\"authors\":\"Patrick Dorey,&nbsp;Davide Polvara\",\"doi\":\"10.1007/JHEP10(2023)177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently we showed how, in two-dimensional scalar theories, one-loop threshold diagrams can be cut into the product of one or more tree-level diagrams [1]. Using this method on the ADE series of Toda models, we computed the double- and single-pole coefficients of the Laurent expansion of the S-matrix around a pole of arbitrary even order, finding agreement with the bootstrapped results. Here we generalise the cut method explained in [1] to multiple loops and use it to simplify large networks of singular diagrams. We observe that only a small number of cut diagrams survive and contribute to the expected bootstrapped result, while most of them cancel each other out through a mechanism inherited from the tree-level integrability of these models. The simplification mechanism between cut diagrams inside networks is reminiscent of Gauss’s theorem in the space of Feynman diagrams.</p>\",\"PeriodicalId\":48906,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2023 10\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP10(2023)177.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP10(2023)177\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP10(2023)177","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

最近,我们展示了在二维标量理论中,如何把一环阈值图切割成一个或多个树级图的乘积[1]。用这种方法处理户田模型的 ADE 序列,我们计算了 S 矩阵围绕任意偶数阶极的劳伦特展开的双极和单极系数,发现与引导结果一致。在这里,我们将 [1] 中解释的切割方法推广到多回路,并用它来简化大型奇异图网络。我们观察到,只有少量切割图能够存活下来,并对预期的引导结果做出贡献,而大部分切割图则通过这些模型的树级可整性机制相互抵消。网络内部切割图之间的简化机制让人想起费曼图空间中的高斯定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From tree- to loop-simplicity in affine Toda theories II: higher-order poles and cut decompositions

Recently we showed how, in two-dimensional scalar theories, one-loop threshold diagrams can be cut into the product of one or more tree-level diagrams [1]. Using this method on the ADE series of Toda models, we computed the double- and single-pole coefficients of the Laurent expansion of the S-matrix around a pole of arbitrary even order, finding agreement with the bootstrapped results. Here we generalise the cut method explained in [1] to multiple loops and use it to simplify large networks of singular diagrams. We observe that only a small number of cut diagrams survive and contribute to the expected bootstrapped result, while most of them cancel each other out through a mechanism inherited from the tree-level integrability of these models. The simplification mechanism between cut diagrams inside networks is reminiscent of Gauss’s theorem in the space of Feynman diagrams.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
10.00
自引率
46.30%
发文量
2107
审稿时长
12 weeks
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信