海草Cymodocea nodosa的声散射特性:原位测量

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Erhan Mutlu, Cansu Olguner
{"title":"海草Cymodocea nodosa的声散射特性:原位测量","authors":"Erhan Mutlu, Cansu Olguner","doi":"10.1515/bot-2022-0083","DOIUrl":null,"url":null,"abstract":"Abstract Marine prairies play various crucial roles in marine ecosystems. The seagrasses that compose them are one of the most important components engineering the marine coastal system, providing significant spatial niches. Some of the seagrasses found in marine prairies are protected, and it is not recommended to sample them with destructive methods. Non-destructive methods such as remote sensing have been proposed as important means of studying these protected species. In the present study, the acoustic scattering properties of Cymodocea nodosa were studied with two different in / ex situ experiments conducted on a Turkish Mediterranean coast using a scientific echosounder (206 kHz split beam transducer) in different months over the years 2011 and 2012. After a series of acoustic processes, correlations and regression equations were established between different acoustic parameters of the Elementary Distance Sampling Units and biometric traits of below/above ground parts of the seagrass. The relationships were logarithmically established producing first a Rayleigh zone, followed by a geometrical zone that occurred with increased biometrics. No seasonal difference occurred in the relationships for the above-ground parts. Unlike the leaves, seagrass sheaths demonstrated unstable echo energy, inconsistent relationships, and unexplained acoustic responses over the span of several months. Regarding leaf density changing in time, significant relationships were explained as a function of the acoustic zones. Four points were highlighted to explain the differences in the estimations between the two experiments; i) the backscattering strengths depended on strength of biomass and its fractions (leaf area, shoot density and volume) between the two experiments, ii) the first experiment measured backscattering strength from individual specimens, but the second experiment was performed on the total biomass of seagrass per unit area, iii) different frequency response to the biometrics occurred in the two experiments, and iv) the non-linear effect of the sheath could not be separated from that of the leaf during the second experiment. The present study was the first attempt to characterize relationships between the biometric and acoustic backscattering properties of C. nodosa , and will guide researchers in future use of non-destructive methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic scattering properties of a seagrass, <i>Cymodocea nodosa</i>: <i>in-situ</i> measurements\",\"authors\":\"Erhan Mutlu, Cansu Olguner\",\"doi\":\"10.1515/bot-2022-0083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Marine prairies play various crucial roles in marine ecosystems. The seagrasses that compose them are one of the most important components engineering the marine coastal system, providing significant spatial niches. Some of the seagrasses found in marine prairies are protected, and it is not recommended to sample them with destructive methods. Non-destructive methods such as remote sensing have been proposed as important means of studying these protected species. In the present study, the acoustic scattering properties of Cymodocea nodosa were studied with two different in / ex situ experiments conducted on a Turkish Mediterranean coast using a scientific echosounder (206 kHz split beam transducer) in different months over the years 2011 and 2012. After a series of acoustic processes, correlations and regression equations were established between different acoustic parameters of the Elementary Distance Sampling Units and biometric traits of below/above ground parts of the seagrass. The relationships were logarithmically established producing first a Rayleigh zone, followed by a geometrical zone that occurred with increased biometrics. No seasonal difference occurred in the relationships for the above-ground parts. Unlike the leaves, seagrass sheaths demonstrated unstable echo energy, inconsistent relationships, and unexplained acoustic responses over the span of several months. Regarding leaf density changing in time, significant relationships were explained as a function of the acoustic zones. Four points were highlighted to explain the differences in the estimations between the two experiments; i) the backscattering strengths depended on strength of biomass and its fractions (leaf area, shoot density and volume) between the two experiments, ii) the first experiment measured backscattering strength from individual specimens, but the second experiment was performed on the total biomass of seagrass per unit area, iii) different frequency response to the biometrics occurred in the two experiments, and iv) the non-linear effect of the sheath could not be separated from that of the leaf during the second experiment. The present study was the first attempt to characterize relationships between the biometric and acoustic backscattering properties of C. nodosa , and will guide researchers in future use of non-destructive methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bot-2022-0083\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bot-2022-0083","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

海洋草原在海洋生态系统中发挥着各种重要作用。构成它们的海草是海洋海岸系统最重要的组成部分之一,提供了重要的空间生态位。在海洋草原上发现的一些海草是受保护的,不建议用破坏性的方法对它们进行取样。遥感等非破坏性方法被认为是研究这些受保护物种的重要手段。本研究在2011年和2012年的不同月份,利用科学回声测深仪(206 kHz分束换能器)在土耳其地中海沿岸进行了两次不同的原位/非原位实验,研究了Cymodocea nodosa的声散射特性。通过一系列声学处理,建立了基本距离采样单元不同声学参数与海草地上、地下部分生物特征之间的相关关系和回归方程。这种关系是对数建立的,首先产生一个瑞利区,然后是一个几何区,随着生物特征的增加而发生。地上部分的关系不存在季节差异。与树叶不同,海草鞘在几个月内表现出不稳定的回声能量,不一致的关系和无法解释的声学响应。叶片密度随时间的变化与声区有显著的关系。强调了四点来解释两个实验之间估计的差异;1)后向散射强度取决于两个实验之间生物量及其组分(叶面积、茎密度和体积)的强度;2)第一个实验测量的是单个样品的后向散射强度,而第二个实验测量的是单位面积海草的总生物量;3)两个实验对生物特征的频率响应不同。iv)在第二次实验中,叶鞘的非线性效应无法与叶片的非线性效应分离。本研究是第一次尝试表征紫杉树的生物特征和声学后向散射特性之间的关系,并将指导研究人员在未来使用非破坏性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic scattering properties of a seagrass, Cymodocea nodosa: in-situ measurements
Abstract Marine prairies play various crucial roles in marine ecosystems. The seagrasses that compose them are one of the most important components engineering the marine coastal system, providing significant spatial niches. Some of the seagrasses found in marine prairies are protected, and it is not recommended to sample them with destructive methods. Non-destructive methods such as remote sensing have been proposed as important means of studying these protected species. In the present study, the acoustic scattering properties of Cymodocea nodosa were studied with two different in / ex situ experiments conducted on a Turkish Mediterranean coast using a scientific echosounder (206 kHz split beam transducer) in different months over the years 2011 and 2012. After a series of acoustic processes, correlations and regression equations were established between different acoustic parameters of the Elementary Distance Sampling Units and biometric traits of below/above ground parts of the seagrass. The relationships were logarithmically established producing first a Rayleigh zone, followed by a geometrical zone that occurred with increased biometrics. No seasonal difference occurred in the relationships for the above-ground parts. Unlike the leaves, seagrass sheaths demonstrated unstable echo energy, inconsistent relationships, and unexplained acoustic responses over the span of several months. Regarding leaf density changing in time, significant relationships were explained as a function of the acoustic zones. Four points were highlighted to explain the differences in the estimations between the two experiments; i) the backscattering strengths depended on strength of biomass and its fractions (leaf area, shoot density and volume) between the two experiments, ii) the first experiment measured backscattering strength from individual specimens, but the second experiment was performed on the total biomass of seagrass per unit area, iii) different frequency response to the biometrics occurred in the two experiments, and iv) the non-linear effect of the sheath could not be separated from that of the leaf during the second experiment. The present study was the first attempt to characterize relationships between the biometric and acoustic backscattering properties of C. nodosa , and will guide researchers in future use of non-destructive methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信