José Daniel Cardona-Cárdenas, Diego Andrés Hincapié Zuluaga, Juan Gonzalo Ardila Marín, Rafael de Oliveira Faria, Carlos Alberto Ramírez Vanegas
{"title":"叶片和固体度对H-Darrieus水轮机性能影响的CFD模拟","authors":"José Daniel Cardona-Cárdenas, Diego Andrés Hincapié Zuluaga, Juan Gonzalo Ardila Marín, Rafael de Oliveira Faria, Carlos Alberto Ramírez Vanegas","doi":"10.24857/rgsa.v18n1-007","DOIUrl":null,"url":null,"abstract":"Purpose: In the present work, the 2D design of H-Darrieus turbines with a diameter of 900 mm and NACA blades 0018, 0025, 2415, and 4415 has been carried out for the solidity values of 0,5; 1 and 1,5. In order to know its maximum performance. Method/design/approach: The 2D simulations were developed with the ANSYS® FLUENT package in the transient state, varying the angular velocity (ω) for a peak velocity ratio (TSR) of 1 to 7 and the SST K-ω turbulence model, for a constant water flow rate of 1 m/s. This in order to know the results of the torque (Nm) generated and thus calculate the power coefficient (Cp). Results and conclusion: The NACA 0018 blade reached a power coefficient of 0,604 for a solidity of 0,5, followed by NACA 2415 blade at the same solidity with a maximum Cp of 0,594. On the other hand, the NACA 0025 blade for solidity of 1 reached a maximum Cp value of 0,570, while the NACA 4415 profile with a solidity of 1,5 obtained a maximum value of 0.495. Research implications: These results of maximum Cp values were given in a TSR range of 2 to 4 with a mean value of 3,5 for NACA profiles 0018 and 2415. Thus, evidencing the behavior of this type of turbine reaching maximum values to then begin to decrease. Originality/value: The present work contributes to the understanding of the impact of geometrical parameters on the operating coefficient of H-Darrieus.","PeriodicalId":38210,"journal":{"name":"Revista de Gestao Social e Ambiental","volume":"250 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Blade and Solidity on the Performance of H-Darrieus Hydrokinetic Turbines by CFD Simulation\",\"authors\":\"José Daniel Cardona-Cárdenas, Diego Andrés Hincapié Zuluaga, Juan Gonzalo Ardila Marín, Rafael de Oliveira Faria, Carlos Alberto Ramírez Vanegas\",\"doi\":\"10.24857/rgsa.v18n1-007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: In the present work, the 2D design of H-Darrieus turbines with a diameter of 900 mm and NACA blades 0018, 0025, 2415, and 4415 has been carried out for the solidity values of 0,5; 1 and 1,5. In order to know its maximum performance. Method/design/approach: The 2D simulations were developed with the ANSYS® FLUENT package in the transient state, varying the angular velocity (ω) for a peak velocity ratio (TSR) of 1 to 7 and the SST K-ω turbulence model, for a constant water flow rate of 1 m/s. This in order to know the results of the torque (Nm) generated and thus calculate the power coefficient (Cp). Results and conclusion: The NACA 0018 blade reached a power coefficient of 0,604 for a solidity of 0,5, followed by NACA 2415 blade at the same solidity with a maximum Cp of 0,594. On the other hand, the NACA 0025 blade for solidity of 1 reached a maximum Cp value of 0,570, while the NACA 4415 profile with a solidity of 1,5 obtained a maximum value of 0.495. Research implications: These results of maximum Cp values were given in a TSR range of 2 to 4 with a mean value of 3,5 for NACA profiles 0018 and 2415. Thus, evidencing the behavior of this type of turbine reaching maximum values to then begin to decrease. Originality/value: The present work contributes to the understanding of the impact of geometrical parameters on the operating coefficient of H-Darrieus.\",\"PeriodicalId\":38210,\"journal\":{\"name\":\"Revista de Gestao Social e Ambiental\",\"volume\":\"250 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Gestao Social e Ambiental\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24857/rgsa.v18n1-007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Gestao Social e Ambiental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24857/rgsa.v18n1-007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
Impact of Blade and Solidity on the Performance of H-Darrieus Hydrokinetic Turbines by CFD Simulation
Purpose: In the present work, the 2D design of H-Darrieus turbines with a diameter of 900 mm and NACA blades 0018, 0025, 2415, and 4415 has been carried out for the solidity values of 0,5; 1 and 1,5. In order to know its maximum performance. Method/design/approach: The 2D simulations were developed with the ANSYS® FLUENT package in the transient state, varying the angular velocity (ω) for a peak velocity ratio (TSR) of 1 to 7 and the SST K-ω turbulence model, for a constant water flow rate of 1 m/s. This in order to know the results of the torque (Nm) generated and thus calculate the power coefficient (Cp). Results and conclusion: The NACA 0018 blade reached a power coefficient of 0,604 for a solidity of 0,5, followed by NACA 2415 blade at the same solidity with a maximum Cp of 0,594. On the other hand, the NACA 0025 blade for solidity of 1 reached a maximum Cp value of 0,570, while the NACA 4415 profile with a solidity of 1,5 obtained a maximum value of 0.495. Research implications: These results of maximum Cp values were given in a TSR range of 2 to 4 with a mean value of 3,5 for NACA profiles 0018 and 2415. Thus, evidencing the behavior of this type of turbine reaching maximum values to then begin to decrease. Originality/value: The present work contributes to the understanding of the impact of geometrical parameters on the operating coefficient of H-Darrieus.