无阳极固态锂金属电池超薄金属氧化物涂层的反应性和镀锂机理研究

Michael J. Counihan, Taewoo Kim, Rajesh Pathak, Teodora Zagorac, Yingjie Yang, Meghan E. Burns, Jordi Cabana, Robert F. Klie, Luke Hanley, Justin G. Connell, Anil U. Mane, Jeffrey W. Elam, Sanja Tepavcevic
{"title":"无阳极固态锂金属电池超薄金属氧化物涂层的反应性和镀锂机理研究","authors":"Michael J. Counihan, Taewoo Kim, Rajesh Pathak, Teodora Zagorac, Yingjie Yang, Meghan E. Burns, Jordi Cabana, Robert F. Klie, Luke Hanley, Justin G. Connell, Anil U. Mane, Jeffrey W. Elam, Sanja Tepavcevic","doi":"10.3389/fbael.2023.1292622","DOIUrl":null,"url":null,"abstract":"Solid-state batteries (SSBs) in an “anode-free” cell format using lithium metal anodes are the best candidates for high energy density battery applications. However, low lithium metal Coulombic efficiency and charge loss due to solid electrolyte interphase (SEI) formation severely limit the cycle life of anode-free SSBs. Here, we explore ultra-thin (5–20 nm) Al 2 O 3 and ZnO coatings deposited by atomic layer deposition (ALD) on copper electrodes for anode-free cells with a solid polymer electrolyte. Voltammetry shows that lithium inventory loss from SEI formation is reduced over 50% with Al 2 O 3 @Cu electrodes, but these electrodes experience orders of magnitude higher interface resistances than bare Cu and ZnO@Cu electrodes due to low ionic and electronic conductivities. The electrochemical differences are reflected in XPS, where Al 2 O 3 undergoes a self-limiting lithiation reaction with Li 0 , while ZnO reacts completely with Li 0 to form LiZn and Li 2 O. These chemical differences result in higher and lower lithium plating nucleation overpotentials for Al 2 O 3 (up to 220 mV) and ZnO (down to 15 mV) coatings, respectively, relative to uncoated Cu electrodes (35 mV). ToF-SIMS reveals lithium plating underneath a Li y AlO x coating and through emergent defects and pinholes with Al 2 O 3 @Cu electrodes, while it plates exclusively on top of converted ZnO@Cu electrodes. SEM corroborates these mechanisms, showing sparse coverage of isolated Li clusters plated with Al 2 O 3 @Cu electrodes, while Cu and ZnO@Cu grow more dense and interconnected deposits. Despite both coatings improving different aspects of anode-free battery design, unmodified Cu electrodes show higher Coulombic efficiencies (∼77%) than Al 2 O 3 @Cu (up to 70%) and ZnO@Cu (up to 75%) electrodes. Increasing Al 2 O 3 thickness decreases the practical current density compared to unmodified Cu (30 µA/cm 2 ), but increasing ZnO thicknesses can double or triple this value. These (electro)chemical and morphological observations suggest two mechanisms: less-reactive metal oxides develop lithium ion conductivity through their structure to plate lithium underneath, while more-reactive metal oxides undergo full reduction and conversion with lithium plating above the coating. This fundamental research opens future work to leverage these mechanisms and explore other materials for high-efficiency anode-free SSBs.","PeriodicalId":474803,"journal":{"name":"Frontiers in Batteries and Electrochemistry","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into the reactivity and lithium plating mechanisms of ultra-thin metal oxide coatings for anode-free solid-state lithium metal batteries\",\"authors\":\"Michael J. Counihan, Taewoo Kim, Rajesh Pathak, Teodora Zagorac, Yingjie Yang, Meghan E. Burns, Jordi Cabana, Robert F. Klie, Luke Hanley, Justin G. Connell, Anil U. Mane, Jeffrey W. Elam, Sanja Tepavcevic\",\"doi\":\"10.3389/fbael.2023.1292622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state batteries (SSBs) in an “anode-free” cell format using lithium metal anodes are the best candidates for high energy density battery applications. However, low lithium metal Coulombic efficiency and charge loss due to solid electrolyte interphase (SEI) formation severely limit the cycle life of anode-free SSBs. Here, we explore ultra-thin (5–20 nm) Al 2 O 3 and ZnO coatings deposited by atomic layer deposition (ALD) on copper electrodes for anode-free cells with a solid polymer electrolyte. Voltammetry shows that lithium inventory loss from SEI formation is reduced over 50% with Al 2 O 3 @Cu electrodes, but these electrodes experience orders of magnitude higher interface resistances than bare Cu and ZnO@Cu electrodes due to low ionic and electronic conductivities. The electrochemical differences are reflected in XPS, where Al 2 O 3 undergoes a self-limiting lithiation reaction with Li 0 , while ZnO reacts completely with Li 0 to form LiZn and Li 2 O. These chemical differences result in higher and lower lithium plating nucleation overpotentials for Al 2 O 3 (up to 220 mV) and ZnO (down to 15 mV) coatings, respectively, relative to uncoated Cu electrodes (35 mV). ToF-SIMS reveals lithium plating underneath a Li y AlO x coating and through emergent defects and pinholes with Al 2 O 3 @Cu electrodes, while it plates exclusively on top of converted ZnO@Cu electrodes. SEM corroborates these mechanisms, showing sparse coverage of isolated Li clusters plated with Al 2 O 3 @Cu electrodes, while Cu and ZnO@Cu grow more dense and interconnected deposits. Despite both coatings improving different aspects of anode-free battery design, unmodified Cu electrodes show higher Coulombic efficiencies (∼77%) than Al 2 O 3 @Cu (up to 70%) and ZnO@Cu (up to 75%) electrodes. Increasing Al 2 O 3 thickness decreases the practical current density compared to unmodified Cu (30 µA/cm 2 ), but increasing ZnO thicknesses can double or triple this value. These (electro)chemical and morphological observations suggest two mechanisms: less-reactive metal oxides develop lithium ion conductivity through their structure to plate lithium underneath, while more-reactive metal oxides undergo full reduction and conversion with lithium plating above the coating. This fundamental research opens future work to leverage these mechanisms and explore other materials for high-efficiency anode-free SSBs.\",\"PeriodicalId\":474803,\"journal\":{\"name\":\"Frontiers in Batteries and Electrochemistry\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Batteries and Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fbael.2023.1292622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Batteries and Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbael.2023.1292622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用锂金属阳极的“无阳极”电池格式的固态电池(SSBs)是高能量密度电池应用的最佳候选者。然而,由于固体电解质界面相(SEI)的形成,低锂金属库仑效率和电荷损失严重限制了无阳极固态电池的循环寿命。本研究采用原子层沉积(ALD)的方法在无阳极电池的铜电极上制备了超薄(5-20 nm) al2o3和ZnO涂层。伏安法表明,使用Al 2o3 @Cu电极,SEI形成过程中的锂库存损失减少了50%以上,但由于离子和电子电导率较低,这些电极的界面电阻比裸Cu和ZnO@Cu电极高几个数量级。电化学差异反映在XPS上,其中Al 2o3与Li 0发生自限锂化反应,而ZnO与Li 0完全反应形成LiZn和li2o。这些化学差异导致Al 2o3涂层的锂成核过电位(高达220 mV)和ZnO(低至15 mV)相对于未涂覆的Cu电极(35 mV)更高和更低。ToF-SIMS揭示了锂电镀在Li y AlO x涂层下,并通过Al 2o3 @Cu电极的紧急缺陷和针孔,而它完全镀在转换ZnO@Cu电极的顶部。扫描电镜证实了这些机制,显示Al 2o3 @Cu电极镀的孤立的Li簇稀疏覆盖,而Cu和ZnO@Cu生长更密集和相互连接的沉积物。尽管这两种涂层都改善了无阳极电池设计的不同方面,但未修饰的Cu电极的库仑效率(~ 77%)高于Al 2o3 @Cu电极(高达70%)和ZnO@Cu电极(高达75%)。与未修饰的Cu相比,增加al2o3厚度会降低实际电流密度(30 μ A/ cm2),但增加ZnO厚度可以使该值增加一倍或三倍。这些(电)化学和形态学观察表明了两种机制:活性较低的金属氧化物通过其结构形成锂离子电导率,并在下面镀上锂,而活性较高的金属氧化物则在涂层上面镀上锂,从而完全还原和转化。这项基础研究为利用这些机制和探索高效无阳极ssb的其他材料开辟了未来的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights into the reactivity and lithium plating mechanisms of ultra-thin metal oxide coatings for anode-free solid-state lithium metal batteries
Solid-state batteries (SSBs) in an “anode-free” cell format using lithium metal anodes are the best candidates for high energy density battery applications. However, low lithium metal Coulombic efficiency and charge loss due to solid electrolyte interphase (SEI) formation severely limit the cycle life of anode-free SSBs. Here, we explore ultra-thin (5–20 nm) Al 2 O 3 and ZnO coatings deposited by atomic layer deposition (ALD) on copper electrodes for anode-free cells with a solid polymer electrolyte. Voltammetry shows that lithium inventory loss from SEI formation is reduced over 50% with Al 2 O 3 @Cu electrodes, but these electrodes experience orders of magnitude higher interface resistances than bare Cu and ZnO@Cu electrodes due to low ionic and electronic conductivities. The electrochemical differences are reflected in XPS, where Al 2 O 3 undergoes a self-limiting lithiation reaction with Li 0 , while ZnO reacts completely with Li 0 to form LiZn and Li 2 O. These chemical differences result in higher and lower lithium plating nucleation overpotentials for Al 2 O 3 (up to 220 mV) and ZnO (down to 15 mV) coatings, respectively, relative to uncoated Cu electrodes (35 mV). ToF-SIMS reveals lithium plating underneath a Li y AlO x coating and through emergent defects and pinholes with Al 2 O 3 @Cu electrodes, while it plates exclusively on top of converted ZnO@Cu electrodes. SEM corroborates these mechanisms, showing sparse coverage of isolated Li clusters plated with Al 2 O 3 @Cu electrodes, while Cu and ZnO@Cu grow more dense and interconnected deposits. Despite both coatings improving different aspects of anode-free battery design, unmodified Cu electrodes show higher Coulombic efficiencies (∼77%) than Al 2 O 3 @Cu (up to 70%) and ZnO@Cu (up to 75%) electrodes. Increasing Al 2 O 3 thickness decreases the practical current density compared to unmodified Cu (30 µA/cm 2 ), but increasing ZnO thicknesses can double or triple this value. These (electro)chemical and morphological observations suggest two mechanisms: less-reactive metal oxides develop lithium ion conductivity through their structure to plate lithium underneath, while more-reactive metal oxides undergo full reduction and conversion with lithium plating above the coating. This fundamental research opens future work to leverage these mechanisms and explore other materials for high-efficiency anode-free SSBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信