莫里塔上下文结构上的 Igusa-Todorov (\phi \)-维度

IF 0.5 4区 数学 Q3 MATHEMATICS
Marcos Barrios, Gustavo Mata
{"title":"莫里塔上下文结构上的 Igusa-Todorov (\\phi \\)-维度","authors":"Marcos Barrios,&nbsp;Gustavo Mata","doi":"10.1007/s10468-023-10218-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we prove that, under certain hypotheses, Morita context algebras with zero bimodule morphisms have finite <span>\\(\\phi \\)</span>-dimension. For these algebras we also study the behaviour of the <span>\\(\\phi \\)</span>-dimension for an algebra and its opposite. In particular we show that the <span>\\(\\phi \\)</span>-dimension of an Artin algebra is not symmetric, i.e. there exists an Artin algebra <i>A</i> such that <span>\\(\\phi \\dim (A) \\not = \\phi \\dim (A^{op})\\)</span>.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"26 6","pages":"3255 - 3269"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Igusa-Todorov \\\\(\\\\phi \\\\)-Dimension on Morita Context Algebras\",\"authors\":\"Marcos Barrios,&nbsp;Gustavo Mata\",\"doi\":\"10.1007/s10468-023-10218-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article we prove that, under certain hypotheses, Morita context algebras with zero bimodule morphisms have finite <span>\\\\(\\\\phi \\\\)</span>-dimension. For these algebras we also study the behaviour of the <span>\\\\(\\\\phi \\\\)</span>-dimension for an algebra and its opposite. In particular we show that the <span>\\\\(\\\\phi \\\\)</span>-dimension of an Artin algebra is not symmetric, i.e. there exists an Artin algebra <i>A</i> such that <span>\\\\(\\\\phi \\\\dim (A) \\\\not = \\\\phi \\\\dim (A^{op})\\\\)</span>.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"26 6\",\"pages\":\"3255 - 3269\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-023-10218-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10218-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们证明了在某些假设条件下,双模态为零的莫里塔上下文代数具有有限的 \(\phi \)-维度。对于这些代数,我们还研究了一个代数及其反面的 \(\phi\)-dimension 的行为。特别是,我们证明了阿尔丁代数的 \(\phi \)-维度不是对称的,也就是说,存在一个阿尔丁代数 A,使得 \(\phi \dim (A) \not = \phi \dim (A^{op})\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Igusa-Todorov \(\phi \)-Dimension on Morita Context Algebras

In this article we prove that, under certain hypotheses, Morita context algebras with zero bimodule morphisms have finite \(\phi \)-dimension. For these algebras we also study the behaviour of the \(\phi \)-dimension for an algebra and its opposite. In particular we show that the \(\phi \)-dimension of an Artin algebra is not symmetric, i.e. there exists an Artin algebra A such that \(\phi \dim (A) \not = \phi \dim (A^{op})\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信